2982 lines
100 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <base_units.h>
#include <bitmaps.h>
#include <math/util.h> // for KiROUND
#include <eda_draw_frame.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_compound.h>
#include <geometry/shape_null.h>
#include <geometry/geometry_utils.h>
#include <layer_range.h>
#include <string_utils.h>
#include <i18n_utility.h>
#include <view/view.h>
#include <board.h>
#include <board_connected_item.h>
#include <board_design_settings.h>
#include <footprint.h>
#include <lset.h>
#include <pad.h>
#include <pad_utils.h>
#include <pcb_shape.h>
#include <connectivity/connectivity_data.h>
#include <eda_units.h>
#include <convert_basic_shapes_to_polygon.h>
#include <widgets/msgpanel.h>
#include <pcb_painter.h>
#include <properties/property_validators.h>
#include <wx/log.h>
#include <api/api_enums.h>
#include <api/api_utils.h>
#include <api/api_pcb_utils.h>
#include <api/board/board_types.pb.h>
#include <memory>
#include <macros.h>
#include <magic_enum.hpp>
#include <drc/drc_item.h>
#include "kiface_base.h"
#include "pcbnew_settings.h"
#include <pcb_group.h>
#include <gal/graphics_abstraction_layer.h>
#include <pin_type.h>
using KIGFX::PCB_PAINTER;
using KIGFX::PCB_RENDER_SETTINGS;
PAD::PAD( FOOTPRINT* parent ) :
BOARD_CONNECTED_ITEM( parent, PCB_PAD_T ),
m_padStack( this )
{
VECTOR2I& drill = m_padStack.Drill().size;
m_padStack.SetSize( { EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 60 ),
EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 60 ) },
PADSTACK::ALL_LAYERS );
drill.x = drill.y = EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 30 ); // Default drill size 30 mils.
m_lengthPadToDie = 0;
m_delayPadToDie = 0;
if( m_parent && m_parent->Type() == PCB_FOOTPRINT_T )
m_pos = GetParent()->GetPosition();
SetShape( F_Cu, PAD_SHAPE::CIRCLE ); // Default pad shape is PAD_CIRCLE.
SetAnchorPadShape( F_Cu, PAD_SHAPE::CIRCLE ); // Default shape for custom shaped pads
// is PAD_CIRCLE.
SetDrillShape( PAD_DRILL_SHAPE::CIRCLE ); // Default pad drill shape is a circle.
m_attribute = PAD_ATTRIB::PTH; // Default pad type is plated through hole
SetProperty( PAD_PROP::NONE ); // no special fabrication property
// Parameters for round rect only:
m_padStack.SetRoundRectRadiusRatio( 0.25, F_Cu ); // from IPC-7351C standard
// Parameters for chamfered rect only:
m_padStack.SetChamferRatio( 0.2, F_Cu );
m_padStack.SetChamferPositions( RECT_NO_CHAMFER, F_Cu );
// Set layers mask to default for a standard thru hole pad.
m_padStack.SetLayerSet( PTHMask() );
SetSubRatsnest( 0 ); // used in ratsnest calculations
SetDirty();
m_effectiveBoundingRadius = 0;
for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu, BoardCopperLayerCount() ) )
m_zoneLayerOverrides[layer] = ZLO_NONE;
m_lastGalZoomLevel = 0.0;
}
PAD::PAD( const PAD& aOther ) :
BOARD_CONNECTED_ITEM( aOther.GetParent(), PCB_PAD_T ),
m_padStack( this )
{
PAD::operator=( aOther );
const_cast<KIID&>( m_Uuid ) = aOther.m_Uuid;
}
PAD& PAD::operator=( const PAD &aOther )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
ImportSettingsFrom( aOther );
SetPadToDieLength( aOther.GetPadToDieLength() );
SetPadToDieDelay( aOther.GetPadToDieDelay() );
SetPosition( aOther.GetPosition() );
SetNumber( aOther.GetNumber() );
SetPinType( aOther.GetPinType() );
SetPinFunction( aOther.GetPinFunction() );
SetSubRatsnest( aOther.GetSubRatsnest() );
m_effectiveBoundingRadius = aOther.m_effectiveBoundingRadius;
return *this;
}
void PAD::CopyFrom( const BOARD_ITEM* aOther )
{
wxCHECK( aOther && aOther->Type() == PCB_PAD_T, /* void */ );
*this = *static_cast<const PAD*>( aOther );
}
void PAD::Serialize( google::protobuf::Any &aContainer ) const
{
using namespace kiapi::board::types;
Pad pad;
pad.mutable_id()->set_value( m_Uuid.AsStdString() );
kiapi::common::PackVector2( *pad.mutable_position(), GetPosition() );
pad.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED
: kiapi::common::types::LockedState::LS_UNLOCKED );
PackNet( pad.mutable_net() );
pad.set_number( GetNumber().ToUTF8() );
pad.set_type( ToProtoEnum<PAD_ATTRIB, PadType>( GetAttribute() ) );
pad.mutable_pad_to_die_length()->set_value_nm( GetPadToDieLength() );
pad.mutable_pad_to_die_delay()->set_value_as( GetPadToDieDelay() );
google::protobuf::Any padStackMsg;
m_padStack.Serialize( padStackMsg );
padStackMsg.UnpackTo( pad.mutable_pad_stack() );
if( GetLocalClearance().has_value() )
pad.mutable_copper_clearance_override()->set_value_nm( *GetLocalClearance() );
aContainer.PackFrom( pad );
}
bool PAD::Deserialize( const google::protobuf::Any &aContainer )
{
kiapi::board::types::Pad pad;
if( !aContainer.UnpackTo( &pad ) )
return false;
const_cast<KIID&>( m_Uuid ) = KIID( pad.id().value() );
SetPosition( kiapi::common::UnpackVector2( pad.position() ) );
UnpackNet( pad.net() );
SetLocked( pad.locked() == kiapi::common::types::LockedState::LS_LOCKED );
SetAttribute( FromProtoEnum<PAD_ATTRIB>( pad.type() ) );
SetNumber( wxString::FromUTF8( pad.number() ) );
SetPadToDieLength( pad.pad_to_die_length().value_nm() );
SetPadToDieDelay( pad.pad_to_die_delay().value_as() );
google::protobuf::Any padStackWrapper;
padStackWrapper.PackFrom( pad.pad_stack() );
m_padStack.Deserialize( padStackWrapper );
SetLayer( m_padStack.StartLayer() );
if( pad.has_copper_clearance_override() )
SetLocalClearance( pad.copper_clearance_override().value_nm() );
else
SetLocalClearance( std::nullopt );
return true;
}
void PAD::ClearZoneLayerOverrides()
{
std::unique_lock<std::mutex> cacheLock( m_zoneLayerOverridesMutex );
for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu, BoardCopperLayerCount() ) )
m_zoneLayerOverrides[layer] = ZLO_NONE;
}
const ZONE_LAYER_OVERRIDE& PAD::GetZoneLayerOverride( PCB_LAYER_ID aLayer ) const
{
std::unique_lock<std::mutex> cacheLock( m_zoneLayerOverridesMutex );
static const ZONE_LAYER_OVERRIDE defaultOverride = ZLO_NONE;
auto it = m_zoneLayerOverrides.find( aLayer );
return it != m_zoneLayerOverrides.end() ? it->second : defaultOverride;
}
void PAD::SetZoneLayerOverride( PCB_LAYER_ID aLayer, ZONE_LAYER_OVERRIDE aOverride )
{
std::unique_lock<std::mutex> cacheLock( m_zoneLayerOverridesMutex );
m_zoneLayerOverrides[aLayer] = aOverride;
}
bool PAD::CanHaveNumber() const
{
// Aperture pads don't get a number
if( IsAperturePad() )
return false;
// NPTH pads don't get numbers
if( GetAttribute() == PAD_ATTRIB::NPTH )
return false;
return true;
}
bool PAD::IsLocked() const
{
if( GetParent() && GetParent()->IsLocked() )
return true;
return BOARD_ITEM::IsLocked();
};
bool PAD::SharesNetTieGroup( const PAD* aOther ) const
{
FOOTPRINT* parentFp = GetParentFootprint();
if( parentFp && parentFp->IsNetTie() && aOther->GetParentFootprint() == parentFp )
{
std::map<wxString, int> padToNetTieGroupMap = parentFp->MapPadNumbersToNetTieGroups();
int thisNetTieGroup = padToNetTieGroupMap[ GetNumber() ];
int otherNetTieGroup = padToNetTieGroupMap[ aOther->GetNumber() ];
return thisNetTieGroup >= 0 && thisNetTieGroup == otherNetTieGroup;
}
return false;
}
bool PAD::IsNoConnectPad() const
{
return m_pinType.Contains( wxT( "no_connect" ) );
}
bool PAD::IsFreePad() const
{
return GetShortNetname().StartsWith( wxT( "unconnected-(" ) )
&& m_pinType == wxT( "free" );
}
LSET PAD::PTHMask()
{
static LSET saved = LSET::AllCuMask() | LSET( { F_Mask, B_Mask } );
return saved;
}
LSET PAD::SMDMask()
{
static LSET saved( { F_Cu, F_Paste, F_Mask } );
return saved;
}
LSET PAD::ConnSMDMask()
{
static LSET saved( { F_Cu, F_Mask } );
return saved;
}
LSET PAD::UnplatedHoleMask()
{
static LSET saved = LSET( { F_Cu, B_Cu, F_Mask, B_Mask } );
return saved;
}
LSET PAD::ApertureMask()
{
static LSET saved( { F_Paste } );
return saved;
}
bool PAD::IsFlipped() const
{
FOOTPRINT* parent = GetParentFootprint();
return ( parent && parent->GetLayer() == B_Cu );
}
PCB_LAYER_ID PAD::GetLayer() const
{
return BOARD_ITEM::GetLayer();
}
PCB_LAYER_ID PAD::GetPrincipalLayer() const
{
if( m_attribute == PAD_ATTRIB::SMD || m_attribute == PAD_ATTRIB::CONN || GetLayerSet().none() )
return m_layer;
else
return GetLayerSet().Seq().front();
}
bool PAD::FlashLayer( const LSET& aLayers ) const
{
for( PCB_LAYER_ID layer : aLayers )
{
if( FlashLayer( layer ) )
return true;
}
return false;
}
bool PAD::FlashLayer( int aLayer, bool aOnlyCheckIfPermitted ) const
{
if( aLayer == UNDEFINED_LAYER )
return true;
// Sometimes this is called with GAL layers and should just return true
if( aLayer > PCB_LAYER_ID_COUNT )
return true;
PCB_LAYER_ID layer = static_cast<PCB_LAYER_ID>( aLayer );
if( !IsOnLayer( layer ) )
return false;
if( GetAttribute() == PAD_ATTRIB::NPTH && IsCopperLayer( aLayer ) )
{
if( GetShape( layer ) == PAD_SHAPE::CIRCLE && GetDrillShape() == PAD_DRILL_SHAPE::CIRCLE )
{
if( GetOffset( layer ) == VECTOR2I( 0, 0 ) && GetDrillSize().x >= GetSize( layer ).x )
return false;
}
else if( GetShape( layer ) == PAD_SHAPE::OVAL
&& GetDrillShape() == PAD_DRILL_SHAPE::OBLONG )
{
if( GetOffset( layer ) == VECTOR2I( 0, 0 )
&& GetDrillSize().x >= GetSize( layer ).x
&& GetDrillSize().y >= GetSize( layer ).y )
{
return false;
}
}
}
if( LSET::FrontBoardTechMask().test( aLayer ) )
aLayer = F_Cu;
else if( LSET::BackBoardTechMask().test( aLayer ) )
aLayer = B_Cu;
if( GetAttribute() == PAD_ATTRIB::PTH && IsCopperLayer( aLayer ) )
{
PADSTACK::UNCONNECTED_LAYER_MODE mode = m_padStack.UnconnectedLayerMode();
if( mode == PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL )
return true;
// Plated through hole pads need copper on the top/bottom layers for proper soldering
// Unless the user has removed them in the pad dialog
if( mode == PADSTACK::UNCONNECTED_LAYER_MODE::START_END_ONLY )
{
return aLayer == m_padStack.Drill().start || aLayer == m_padStack.Drill().end;
}
if( mode == PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END
&& IsExternalCopperLayer( aLayer ) )
{
return true;
}
if( const BOARD* board = GetBoard() )
{
if( GetZoneLayerOverride( layer ) == ZLO_FORCE_FLASHED )
{
return true;
}
else if( aOnlyCheckIfPermitted )
{
return true;
}
else
{
// Must be static to keep from raising its ugly head in performance profiles
static std::initializer_list<KICAD_T> nonZoneTypes = { PCB_TRACE_T, PCB_ARC_T,
PCB_VIA_T, PCB_PAD_T };
return board->GetConnectivity()->IsConnectedOnLayer( this, aLayer, nonZoneTypes );
}
}
}
return true;
}
void PAD::SetDrillSizeX( const int aX )
{
m_padStack.Drill().size.x = aX;
if( GetDrillShape() == PAD_DRILL_SHAPE::CIRCLE )
SetDrillSizeY( aX );
SetDirty();
}
void PAD::SetDrillShape( PAD_DRILL_SHAPE aShape )
{
m_padStack.Drill().shape = aShape;
if( aShape == PAD_DRILL_SHAPE::CIRCLE )
SetDrillSizeY( GetDrillSizeX() );
m_shapesDirty = true;
}
int PAD::GetRoundRectCornerRadius( PCB_LAYER_ID aLayer ) const
{
return m_padStack.RoundRectRadius( aLayer );
}
void PAD::SetRoundRectCornerRadius( PCB_LAYER_ID aLayer, double aRadius )
{
m_padStack.SetRoundRectRadius( aRadius, aLayer );
}
void PAD::SetRoundRectRadiusRatio( PCB_LAYER_ID aLayer, double aRadiusScale )
{
m_padStack.SetRoundRectRadiusRatio( std::clamp( aRadiusScale, 0.0, 0.5 ), aLayer );
SetDirty();
}
void PAD::SetFrontRoundRectRadiusRatio( double aRadiusScale )
{
wxASSERT_MSG( m_padStack.Mode() == PADSTACK::MODE::NORMAL,
"Set front radius only meaningful for normal padstacks" );
m_padStack.SetRoundRectRadiusRatio( std::clamp( aRadiusScale, 0.0, 0.5 ), F_Cu );
SetDirty();
}
void PAD::SetFrontRoundRectRadiusSize( int aRadius )
{
const VECTOR2I size = m_padStack.Size( F_Cu );
const int minSize = std::min( size.x, size.y );
const double newRatio = aRadius / double( minSize );
SetFrontRoundRectRadiusRatio( newRatio );
}
int PAD::GetFrontRoundRectRadiusSize() const
{
const VECTOR2I size = m_padStack.Size( F_Cu );
const int minSize = std::min( size.x, size.y );
const double ratio = GetFrontRoundRectRadiusRatio();
return KiROUND( ratio * minSize );
}
void PAD::SetChamferRectRatio( PCB_LAYER_ID aLayer, double aChamferScale )
{
m_padStack.SetChamferRatio( aChamferScale, aLayer );
SetDirty();
}
const std::shared_ptr<SHAPE_POLY_SET>& PAD::GetEffectivePolygon( PCB_LAYER_ID aLayer,
ERROR_LOC aErrorLoc ) const
{
if( m_polyDirty[ aErrorLoc ] )
BuildEffectivePolygon( aErrorLoc );
aLayer = Padstack().EffectiveLayerFor( aLayer );
return m_effectivePolygons[ aLayer ][ aErrorLoc ];
}
std::shared_ptr<SHAPE> PAD::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING flashPTHPads ) const
{
if( aLayer == Edge_Cuts )
{
std::shared_ptr<SHAPE_COMPOUND> effective_compund = std::make_shared<SHAPE_COMPOUND>();
if( GetAttribute() == PAD_ATTRIB::PTH || GetAttribute() == PAD_ATTRIB::NPTH )
{
effective_compund->AddShape( GetEffectiveHoleShape() );
return effective_compund;
}
else
{
effective_compund->AddShape( std::make_shared<SHAPE_NULL>() );
return effective_compund;
}
}
if( GetAttribute() == PAD_ATTRIB::PTH )
{
bool flash;
std::shared_ptr<SHAPE_COMPOUND> effective_compund = std::make_shared<SHAPE_COMPOUND>();
if( flashPTHPads == FLASHING::NEVER_FLASHED )
flash = false;
else if( flashPTHPads == FLASHING::ALWAYS_FLASHED )
flash = true;
else
flash = FlashLayer( aLayer );
if( !flash )
{
if( GetAttribute() == PAD_ATTRIB::PTH )
{
effective_compund->AddShape( GetEffectiveHoleShape() );
return effective_compund;
}
else
{
effective_compund->AddShape( std::make_shared<SHAPE_NULL>() );
return effective_compund;
}
}
}
if( m_shapesDirty )
BuildEffectiveShapes();
aLayer = Padstack().EffectiveLayerFor( aLayer );
wxCHECK_MSG( m_effectiveShapes.contains( aLayer ), nullptr,
wxString::Format( wxT( "Missing shape in PAD::GetEffectiveShape for layer %s." ),
magic_enum::enum_name( aLayer ) ) );
wxCHECK_MSG( m_effectiveShapes.at( aLayer ), nullptr,
wxString::Format( wxT( "Null shape in PAD::GetEffectiveShape for layer %s." ),
magic_enum::enum_name( aLayer ) ) );
return m_effectiveShapes[aLayer];
}
std::shared_ptr<SHAPE_SEGMENT> PAD::GetEffectiveHoleShape() const
{
if( m_shapesDirty )
BuildEffectiveShapes();
return m_effectiveHoleShape;
}
int PAD::GetBoundingRadius() const
{
if( m_polyDirty[ ERROR_OUTSIDE ] )
BuildEffectivePolygon( ERROR_OUTSIDE );
return m_effectiveBoundingRadius;
}
void PAD::BuildEffectiveShapes() const
{
std::lock_guard<std::mutex> RAII_lock( m_shapesBuildingLock );
// If we had to wait for the lock then we were probably waiting for someone else to
// finish rebuilding the shapes. So check to see if they're clean now.
if( !m_shapesDirty )
return;
m_effectiveBoundingBox = BOX2I();
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
const SHAPE_COMPOUND& layerShape = buildEffectiveShape( aLayer );
m_effectiveBoundingBox.Merge( layerShape.BBox() );
} );
// Hole shape
m_effectiveHoleShape = nullptr;
VECTOR2I half_size = m_padStack.Drill().size / 2;
int half_width;
VECTOR2I half_len;
if( m_padStack.Drill().shape == PAD_DRILL_SHAPE::CIRCLE )
{
half_width = half_size.x;
}
else
{
half_width = std::min( half_size.x, half_size.y );
half_len = VECTOR2I( half_size.x - half_width, half_size.y - half_width );
}
RotatePoint( half_len, GetOrientation() );
m_effectiveHoleShape = std::make_shared<SHAPE_SEGMENT>( m_pos - half_len, m_pos + half_len,
half_width * 2 );
m_effectiveBoundingBox.Merge( m_effectiveHoleShape->BBox() );
// All done
m_shapesDirty = false;
}
const SHAPE_COMPOUND& PAD::buildEffectiveShape( PCB_LAYER_ID aLayer ) const
{
m_effectiveShapes[aLayer] = std::make_shared<SHAPE_COMPOUND>();
auto add = [this, aLayer]( SHAPE* aShape )
{
m_effectiveShapes[aLayer]->AddShape( aShape );
};
VECTOR2I shapePos = ShapePos( aLayer ); // Fetch only once; rotation involves trig
PAD_SHAPE effectiveShape = GetShape( aLayer );
const VECTOR2I& size = m_padStack.Size( aLayer );
if( effectiveShape == PAD_SHAPE::CUSTOM )
effectiveShape = GetAnchorPadShape( aLayer );
switch( effectiveShape )
{
case PAD_SHAPE::CIRCLE:
add( new SHAPE_CIRCLE( shapePos, size.x / 2 ) );
break;
case PAD_SHAPE::OVAL:
if( size.x == size.y ) // the oval pad is in fact a circle
{
add( new SHAPE_CIRCLE( shapePos, size.x / 2 ) );
}
else
{
VECTOR2I half_size = size / 2;
int half_width = std::min( half_size.x, half_size.y );
VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width );
RotatePoint( half_len, GetOrientation() );
add( new SHAPE_SEGMENT( shapePos - half_len, shapePos + half_len, half_width * 2 ) );
}
break;
case PAD_SHAPE::RECTANGLE:
case PAD_SHAPE::TRAPEZOID:
case PAD_SHAPE::ROUNDRECT:
{
int r = ( effectiveShape == PAD_SHAPE::ROUNDRECT ) ? GetRoundRectCornerRadius( aLayer ) : 0;
VECTOR2I half_size( size.x / 2, size.y / 2 );
VECTOR2I trap_delta( 0, 0 );
if( r )
{
half_size -= VECTOR2I( r, r );
// Avoid degenerated shapes (0 length segments) that always create issues
// For roundrect pad very near a circle, use only a circle
const int min_len = pcbIUScale.mmToIU( 0.0001 );
if( half_size.x < min_len && half_size.y < min_len )
{
add( new SHAPE_CIRCLE( shapePos, r ) );
break;
}
}
else if( effectiveShape == PAD_SHAPE::TRAPEZOID )
{
trap_delta = m_padStack.TrapezoidDeltaSize( aLayer ) / 2;
}
SHAPE_LINE_CHAIN corners;
corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x );
corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x );
corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x );
corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x );
corners.Rotate( GetOrientation() );
corners.Move( shapePos );
// GAL renders rectangles faster than 4-point polygons so it's worth checking if our
// body shape is a rectangle.
if( corners.PointCount() == 4
&&
( ( corners.CPoint( 0 ).y == corners.CPoint( 1 ).y
&& corners.CPoint( 1 ).x == corners.CPoint( 2 ).x
&& corners.CPoint( 2 ).y == corners.CPoint( 3 ).y
&& corners.CPoint( 3 ).x == corners.CPoint( 0 ).x )
||
( corners.CPoint( 0 ).x == corners.CPoint( 1 ).x
&& corners.CPoint( 1 ).y == corners.CPoint( 2 ).y
&& corners.CPoint( 2 ).x == corners.CPoint( 3 ).x
&& corners.CPoint( 3 ).y == corners.CPoint( 0 ).y )
)
)
{
int width = std::abs( corners.CPoint( 2 ).x - corners.CPoint( 0 ).x );
int height = std::abs( corners.CPoint( 2 ).y - corners.CPoint( 0 ).y );
VECTOR2I pos( std::min( corners.CPoint( 2 ).x, corners.CPoint( 0 ).x ),
std::min( corners.CPoint( 2 ).y, corners.CPoint( 0 ).y ) );
add( new SHAPE_RECT( pos, width, height ) );
}
else
{
add( new SHAPE_SIMPLE( corners ) );
}
if( r )
{
add( new SHAPE_SEGMENT( corners.CPoint( 0 ), corners.CPoint( 1 ), r * 2 ) );
add( new SHAPE_SEGMENT( corners.CPoint( 1 ), corners.CPoint( 2 ), r * 2 ) );
add( new SHAPE_SEGMENT( corners.CPoint( 2 ), corners.CPoint( 3 ), r * 2 ) );
add( new SHAPE_SEGMENT( corners.CPoint( 3 ), corners.CPoint( 0 ), r * 2 ) );
}
}
break;
case PAD_SHAPE::CHAMFERED_RECT:
{
SHAPE_POLY_SET outline;
TransformRoundChamferedRectToPolygon( outline, shapePos, GetSize( aLayer ),
GetOrientation(), GetRoundRectCornerRadius( aLayer ),
GetChamferRectRatio( aLayer ),
GetChamferPositions( aLayer ), 0, GetMaxError(),
ERROR_INSIDE );
add( new SHAPE_SIMPLE( outline.COutline( 0 ) ) );
}
break;
default:
wxFAIL_MSG( wxT( "PAD::buildEffectiveShapes: Unsupported pad shape: PAD_SHAPE::" )
+ wxString( std::string( magic_enum::enum_name( effectiveShape ) ) ) );
break;
}
if( GetShape( aLayer ) == PAD_SHAPE::CUSTOM )
{
for( const std::shared_ptr<PCB_SHAPE>& primitive : m_padStack.Primitives( aLayer ) )
{
if( !primitive->IsProxyItem() )
{
for( SHAPE* shape : primitive->MakeEffectiveShapes() )
{
shape->Rotate( GetOrientation() );
shape->Move( shapePos );
add( shape );
}
}
}
}
return *m_effectiveShapes[aLayer];
}
void PAD::BuildEffectivePolygon( ERROR_LOC aErrorLoc ) const
{
std::lock_guard<std::mutex> RAII_lock( m_polyBuildingLock );
// Only calculate this once, not for both ERROR_INSIDE and ERROR_OUTSIDE
bool doBoundingRadius = aErrorLoc == ERROR_OUTSIDE;
// If we had to wait for the lock then we were probably waiting for someone else to
// finish rebuilding the shapes. So check to see if they're clean now.
if( !m_polyDirty[ aErrorLoc ] )
return;
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
// Polygon
std::shared_ptr<SHAPE_POLY_SET>& effectivePolygon = m_effectivePolygons[ aLayer ][ aErrorLoc ];
effectivePolygon = std::make_shared<SHAPE_POLY_SET>();
TransformShapeToPolygon( *effectivePolygon, aLayer, 0, GetMaxError(), aErrorLoc );
} );
if( doBoundingRadius )
{
m_effectiveBoundingRadius = 0;
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
std::shared_ptr<SHAPE_POLY_SET>& effectivePolygon = m_effectivePolygons[ aLayer ][ aErrorLoc ];
for( int cnt = 0; cnt < effectivePolygon->OutlineCount(); ++cnt )
{
const SHAPE_LINE_CHAIN& poly = effectivePolygon->COutline( cnt );
for( int ii = 0; ii < poly.PointCount(); ++ii )
{
int dist = KiROUND( ( poly.CPoint( ii ) - m_pos ).EuclideanNorm() );
m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, dist );
}
}
} );
m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, KiROUND( GetDrillSizeX() / 2.0 ) );
m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, KiROUND( GetDrillSizeY() / 2.0 ) );
}
// All done
m_polyDirty[ aErrorLoc ] = false;
}
const BOX2I PAD::GetBoundingBox() const
{
if( m_shapesDirty )
BuildEffectiveShapes();
return m_effectiveBoundingBox;
}
// Thermal spokes are built on the bounding box, so we must have a layer-specific version
const BOX2I PAD::GetBoundingBox( PCB_LAYER_ID aLayer ) const
{
return buildEffectiveShape( aLayer ).BBox();
}
void PAD::SetAttribute( PAD_ATTRIB aAttribute )
{
if( m_attribute != aAttribute )
{
m_attribute = aAttribute;
LSET& layerMask = m_padStack.LayerSet();
switch( aAttribute )
{
case PAD_ATTRIB::PTH:
// Plump up to all copper layers
layerMask |= LSET::AllCuMask();
break;
case PAD_ATTRIB::SMD:
case PAD_ATTRIB::CONN:
{
// Trim down to no more than one copper layer
LSET copperLayers = layerMask & LSET::AllCuMask();
if( copperLayers.count() > 1 )
{
layerMask &= ~LSET::AllCuMask();
if( copperLayers.test( B_Cu ) )
layerMask.set( B_Cu );
else
layerMask.set( copperLayers.Seq().front() );
}
// No hole
m_padStack.Drill().size = VECTOR2I( 0, 0 );
break;
}
case PAD_ATTRIB::NPTH:
// No number; no net
m_number = wxEmptyString;
SetNetCode( NETINFO_LIST::UNCONNECTED );
break;
}
}
SetDirty();
}
void PAD::SetFrontShape( PAD_SHAPE aShape )
{
const bool wasRoundable = PAD_UTILS::PadHasMeaningfulRoundingRadius( *this, F_Cu );
m_padStack.SetShape( aShape, F_Cu );
const bool isRoundable = PAD_UTILS::PadHasMeaningfulRoundingRadius( *this, F_Cu );
// If we have become roundable, set a sensible rounding default using the IPC rules.
if( !wasRoundable && isRoundable )
{
const double ipcRadiusRatio = PAD_UTILS::GetDefaultIpcRoundingRatio( *this, F_Cu );
m_padStack.SetRoundRectRadiusRatio( ipcRadiusRatio, F_Cu );
}
SetDirty();
}
void PAD::SetProperty( PAD_PROP aProperty )
{
m_property = aProperty;
SetDirty();
}
void PAD::SetOrientation( const EDA_ANGLE& aAngle )
{
m_padStack.SetOrientation( aAngle );
SetDirty();
}
void PAD::SetFPRelativeOrientation( const EDA_ANGLE& aAngle )
{
if( FOOTPRINT* parentFP = GetParentFootprint() )
SetOrientation( aAngle + parentFP->GetOrientation() );
else
SetOrientation( aAngle );
}
EDA_ANGLE PAD::GetFPRelativeOrientation() const
{
if( FOOTPRINT* parentFP = GetParentFootprint() )
return GetOrientation() - parentFP->GetOrientation();
else
return GetOrientation();
}
void PAD::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection )
{
MIRROR( m_pos, aCentre, aFlipDirection );
m_padStack.ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
MIRROR( m_padStack.Offset( aLayer ), VECTOR2I{ 0, 0 }, aFlipDirection );
MIRROR( m_padStack.TrapezoidDeltaSize( aLayer ), VECTOR2I{ 0, 0 }, aFlipDirection );
} );
SetFPRelativeOrientation( -GetFPRelativeOrientation() );
auto mirrorBitFlags = []( int& aBitfield, int a, int b )
{
bool temp = aBitfield & a;
if( aBitfield & b )
aBitfield |= a;
else
aBitfield &= ~a;
if( temp )
aBitfield |= b;
else
aBitfield &= ~b;
};
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT )
{
mirrorBitFlags( m_padStack.ChamferPositions( aLayer ), RECT_CHAMFER_TOP_LEFT,
RECT_CHAMFER_TOP_RIGHT );
mirrorBitFlags( m_padStack.ChamferPositions( aLayer ), RECT_CHAMFER_BOTTOM_LEFT,
RECT_CHAMFER_BOTTOM_RIGHT );
}
else
{
mirrorBitFlags( m_padStack.ChamferPositions( aLayer ), RECT_CHAMFER_TOP_LEFT,
RECT_CHAMFER_BOTTOM_LEFT );
mirrorBitFlags( m_padStack.ChamferPositions( aLayer ), RECT_CHAMFER_TOP_RIGHT,
RECT_CHAMFER_BOTTOM_RIGHT );
}
} );
// Flip padstack geometry
int copperLayerCount = BoardCopperLayerCount();
m_padStack.FlipLayers( copperLayerCount );
// Flip pads layers after padstack geometry
LSET flipped;
for( PCB_LAYER_ID layer : m_padStack.LayerSet() )
flipped.set( GetBoard()->FlipLayer( layer ) );
SetLayerSet( flipped );
// Flip the basic shapes, in custom pads
FlipPrimitives( aFlipDirection );
SetDirty();
}
void PAD::FlipPrimitives( FLIP_DIRECTION aFlipDirection )
{
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
for( std::shared_ptr<PCB_SHAPE>& primitive : m_padStack.Primitives( aLayer ) )
{
// Ensure the primitive parent is up to date. Flip uses GetBoard() that
// imply primitive parent is valid
primitive->SetParent(this);
primitive->Flip( VECTOR2I( 0, 0 ), aFlipDirection );
}
} );
SetDirty();
}
VECTOR2I PAD::ShapePos( PCB_LAYER_ID aLayer ) const
{
VECTOR2I loc_offset = m_padStack.Offset( aLayer );
if( loc_offset.x == 0 && loc_offset.y == 0 )
return m_pos;
RotatePoint( loc_offset, GetOrientation() );
VECTOR2I shape_pos = m_pos + loc_offset;
return shape_pos;
}
bool PAD::IsOnCopperLayer() const
{
if( GetAttribute() == PAD_ATTRIB::NPTH )
{
// NPTH pads have no plated hole cylinder. If their annular ring size is 0 or
// negative, then they have no annular ring either.
bool hasAnnularRing = true;
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
switch( GetShape( aLayer ) )
{
case PAD_SHAPE::CIRCLE:
if( m_padStack.Offset( aLayer ) == VECTOR2I( 0, 0 )
&& m_padStack.Size( aLayer ).x <= m_padStack.Drill().size.x )
{
hasAnnularRing = false;
}
break;
case PAD_SHAPE::OVAL:
if( m_padStack.Offset( aLayer ) == VECTOR2I( 0, 0 )
&& m_padStack.Size( aLayer ).x <= m_padStack.Drill().size.x
&& m_padStack.Size( aLayer ).y <= m_padStack.Drill().size.y )
{
hasAnnularRing = false;
}
break;
default:
// We could subtract the hole polygon from the shape polygon for these, but it
// would be expensive and we're probably well out of the common use cases....
break;
}
} );
if( !hasAnnularRing )
return false;
}
return ( GetLayerSet() & LSET::AllCuMask() ).any();
}
std::optional<int> PAD::GetLocalClearance( wxString* aSource ) const
{
if( m_padStack.Clearance().has_value() && aSource )
*aSource = _( "pad" );
return m_padStack.Clearance();
}
std::optional<int> PAD::GetClearanceOverrides( wxString* aSource ) const
{
if( m_padStack.Clearance().has_value() )
return GetLocalClearance( aSource );
if( FOOTPRINT* parentFootprint = GetParentFootprint() )
return parentFootprint->GetClearanceOverrides( aSource );
return std::optional<int>();
}
int PAD::GetOwnClearance( PCB_LAYER_ID aLayer, wxString* aSource ) const
{
DRC_CONSTRAINT c;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
if( GetAttribute() == PAD_ATTRIB::NPTH )
c = bds.m_DRCEngine->EvalRules( HOLE_CLEARANCE_CONSTRAINT, this, nullptr, aLayer );
else
c = bds.m_DRCEngine->EvalRules( CLEARANCE_CONSTRAINT, this, nullptr, aLayer );
}
if( c.Value().HasMin() )
{
if( aSource )
*aSource = c.GetName();
return c.Value().Min();
}
return 0;
}
int PAD::GetSolderMaskExpansion( PCB_LAYER_ID aLayer ) const
{
// Pads defined only on mask layers (and perhaps on other tech layers) use the shape
// defined by the pad settings only. ALL other pads, even those that don't actually have
// any copper (such as NPTH pads with holes the same size as the pad) get mask expansion.
if( ( m_padStack.LayerSet() & LSET::AllCuMask() ).none() )
return 0;
if( IsFrontLayer( aLayer ) )
aLayer = F_Mask;
else if( IsBackLayer( aLayer ) )
aLayer = B_Mask;
else
return 0;
std::optional<int> margin;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
DRC_CONSTRAINT constraint;
std::shared_ptr<DRC_ENGINE> drcEngine = GetBoard()->GetDesignSettings().m_DRCEngine;
constraint = drcEngine->EvalRules( SOLDER_MASK_EXPANSION_CONSTRAINT, this, nullptr, aLayer );
if( constraint.m_Value.HasOpt() )
margin = constraint.m_Value.Opt();
}
else
{
margin = m_padStack.SolderMaskMargin( aLayer );
if( !margin.has_value() )
{
if( FOOTPRINT* parentFootprint = GetParentFootprint() )
margin = parentFootprint->GetLocalSolderMaskMargin();
}
}
int marginValue = margin.value_or( 0 );
PCB_LAYER_ID cuLayer = ( aLayer == B_Mask ) ? B_Cu : F_Cu;
// ensure mask have a size always >= 0
if( marginValue < 0 )
{
int minsize = -std::min( m_padStack.Size( cuLayer ).x, m_padStack.Size( cuLayer ).y ) / 2;
if( marginValue < minsize )
marginValue = minsize;
}
return marginValue;
}
VECTOR2I PAD::GetSolderPasteMargin( PCB_LAYER_ID aLayer ) const
{
// Pads defined only on mask layers (and perhaps on other tech layers) use the shape
// defined by the pad settings only. ALL other pads, even those that don't actually have
// any copper (such as NPTH pads with holes the same size as the pad) get paste expansion.
if( ( m_padStack.LayerSet() & LSET::AllCuMask() ).none() )
return VECTOR2I( 0, 0 );
if( IsFrontLayer( aLayer ) )
aLayer = F_Paste;
else if( IsBackLayer( aLayer ) )
aLayer = B_Paste;
else
return VECTOR2I( 0, 0 );
std::optional<int> margin;
std::optional<double> mratio;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
DRC_CONSTRAINT constraint;
std::shared_ptr<DRC_ENGINE> drcEngine = GetBoard()->GetDesignSettings().m_DRCEngine;
constraint = drcEngine->EvalRules( SOLDER_PASTE_ABS_MARGIN_CONSTRAINT, this, nullptr, aLayer );
if( constraint.m_Value.HasOpt() )
margin = constraint.m_Value.Opt();
constraint = drcEngine->EvalRules( SOLDER_PASTE_REL_MARGIN_CONSTRAINT, this, nullptr, aLayer );
if( constraint.m_Value.HasOpt() )
mratio = constraint.m_Value.Opt() / 1000.0;
}
else
{
margin = m_padStack.SolderPasteMargin( aLayer );
mratio = m_padStack.SolderPasteMarginRatio( aLayer );
if( !margin.has_value() )
{
if( FOOTPRINT* parentFootprint = GetParentFootprint() )
margin = parentFootprint->GetLocalSolderPasteMargin();
}
if( !mratio.has_value() )
{
if( FOOTPRINT* parentFootprint = GetParentFootprint() )
mratio = parentFootprint->GetLocalSolderPasteMarginRatio();
}
}
PCB_LAYER_ID cuLayer = ( aLayer == B_Paste ) ? B_Cu : F_Cu;
VECTOR2I padSize = m_padStack.Size( cuLayer );
VECTOR2I pad_margin;
pad_margin.x = margin.value_or( 0 ) + KiROUND( padSize.x * mratio.value_or( 0 ) );
pad_margin.y = margin.value_or( 0 ) + KiROUND( padSize.y * mratio.value_or( 0 ) );
// ensure paste have a size always >= 0
if( m_padStack.Shape( aLayer ) != PAD_SHAPE::CUSTOM )
{
if( pad_margin.x < -padSize.x / 2 )
pad_margin.x = -padSize.x / 2;
if( pad_margin.y < -padSize.y / 2 )
pad_margin.y = -padSize.y / 2;
}
return pad_margin;
}
ZONE_CONNECTION PAD::GetZoneConnectionOverrides( wxString* aSource ) const
{
ZONE_CONNECTION connection = m_padStack.ZoneConnection().value_or( ZONE_CONNECTION::INHERITED );
if( connection != ZONE_CONNECTION::INHERITED )
{
if( aSource )
*aSource = _( "pad" );
}
if( connection == ZONE_CONNECTION::INHERITED )
{
if( FOOTPRINT* parentFootprint = GetParentFootprint() )
connection = parentFootprint->GetZoneConnectionOverrides( aSource );
}
return connection;
}
int PAD::GetLocalSpokeWidthOverride( wxString* aSource ) const
{
if( m_padStack.ThermalSpokeWidth().has_value() && aSource )
*aSource = _( "pad" );
return m_padStack.ThermalSpokeWidth().value_or( 0 );
}
int PAD::GetLocalThermalGapOverride( wxString* aSource ) const
{
if( m_padStack.ThermalGap().has_value() && aSource )
*aSource = _( "pad" );
return GetLocalThermalGapOverride().value_or( 0 );
}
void PAD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg;
FOOTPRINT* parentFootprint = static_cast<FOOTPRINT*>( m_parent );
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME )
{
if( parentFootprint )
aList.emplace_back( _( "Footprint" ), parentFootprint->GetReference() );
}
aList.emplace_back( _( "Pad" ), m_number );
if( !GetPinFunction().IsEmpty() )
aList.emplace_back( _( "Pin Name" ), GetPinFunction() );
if( !GetPinType().IsEmpty() )
aList.emplace_back( _( "Pin Type" ), GetPinType() );
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME )
{
aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) );
aList.emplace_back( _( "Resolved Netclass" ),
UnescapeString( GetEffectiveNetClass()->GetHumanReadableName() ) );
if( IsLocked() )
aList.emplace_back( _( "Status" ), _( "Locked" ) );
}
if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN )
aList.emplace_back( _( "Layer" ), layerMaskDescribe() );
if( aFrame->GetName() == FOOTPRINT_EDIT_FRAME_NAME )
{
if( GetAttribute() == PAD_ATTRIB::SMD )
{
// TOOD(JE) padstacks
const std::shared_ptr<SHAPE_POLY_SET>& poly = GetEffectivePolygon( PADSTACK::ALL_LAYERS );
double area = poly->Area();
aList.emplace_back( _( "Area" ), aFrame->MessageTextFromValue( area, true, EDA_DATA_TYPE::AREA ) );
}
}
// Show the pad shape, attribute and property
wxString props = ShowPadAttr();
if( GetProperty() != PAD_PROP::NONE )
props += ',';
switch( GetProperty() )
{
case PAD_PROP::NONE: break;
case PAD_PROP::BGA: props += _( "BGA" ); break;
case PAD_PROP::FIDUCIAL_GLBL: props += _( "Fiducial global" ); break;
case PAD_PROP::FIDUCIAL_LOCAL: props += _( "Fiducial local" ); break;
case PAD_PROP::TESTPOINT: props += _( "Test point" ); break;
case PAD_PROP::HEATSINK: props += _( "Heat sink" ); break;
case PAD_PROP::CASTELLATED: props += _( "Castellated" ); break;
case PAD_PROP::MECHANICAL: props += _( "Mechanical" ); break;
case PAD_PROP::PRESSFIT: props += _( "Press-fit" ); break;
}
// TODO(JE) How to show complex padstack info in the message panel
aList.emplace_back( ShowPadShape( PADSTACK::ALL_LAYERS ), props );
PAD_SHAPE padShape = GetShape( PADSTACK::ALL_LAYERS );
VECTOR2I padSize = m_padStack.Size( PADSTACK::ALL_LAYERS );
if( ( padShape == PAD_SHAPE::CIRCLE || padShape == PAD_SHAPE::OVAL )
&& padSize.x == padSize.y )
{
aList.emplace_back( _( "Diameter" ), aFrame->MessageTextFromValue( padSize.x ) );
}
else
{
aList.emplace_back( _( "Width" ), aFrame->MessageTextFromValue( padSize.x ) );
aList.emplace_back( _( "Height" ), aFrame->MessageTextFromValue( padSize.y ) );
}
EDA_ANGLE fp_orient = parentFootprint ? parentFootprint->GetOrientation() : ANGLE_0;
EDA_ANGLE pad_orient = GetOrientation() - fp_orient;
pad_orient.Normalize180();
if( !fp_orient.IsZero() )
msg.Printf( wxT( "%g(+ %g)" ), pad_orient.AsDegrees(), fp_orient.AsDegrees() );
else
msg.Printf( wxT( "%g" ), GetOrientation().AsDegrees() );
aList.emplace_back( _( "Rotation" ), msg );
if( GetPadToDieLength() )
{
aList.emplace_back( _( "Length in Package" ),
aFrame->MessageTextFromValue( GetPadToDieLength() ) );
}
const VECTOR2I& drill = m_padStack.Drill().size;
if( drill.x > 0 || drill.y > 0 )
{
if( GetDrillShape() == PAD_DRILL_SHAPE::CIRCLE )
{
aList.emplace_back( _( "Hole" ),
wxString::Format( wxT( "%s" ),
aFrame->MessageTextFromValue( drill.x ) ) );
}
else
{
aList.emplace_back( _( "Hole X / Y" ),
wxString::Format( wxT( "%s / %s" ),
aFrame->MessageTextFromValue( drill.x ),
aFrame->MessageTextFromValue( drill.y ) ) );
}
}
wxString source;
int clearance = GetOwnClearance( UNDEFINED_LAYER, &source );
if( !source.IsEmpty() )
{
aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ),
aFrame->MessageTextFromValue( clearance ) ),
wxString::Format( _( "(from %s)" ),
source ) );
}
#if 0
// useful for debug only
aList.emplace_back( wxT( "UUID" ), m_Uuid.AsString() );
#endif
}
bool PAD::HitTest( const VECTOR2I& aPosition, int aAccuracy, PCB_LAYER_ID aLayer ) const
{
if( !IsOnLayer( aLayer ) )
return false;
VECTOR2I delta = aPosition - GetPosition();
int boundingRadius = GetBoundingRadius() + aAccuracy;
if( delta.SquaredEuclideanNorm() > SEG::Square( boundingRadius ) )
return false;
bool contains = GetEffectivePolygon( aLayer, ERROR_INSIDE )->Contains( aPosition, -1, aAccuracy );
return contains;
}
bool PAD::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
VECTOR2I delta = aPosition - GetPosition();
int boundingRadius = GetBoundingRadius() + aAccuracy;
if( delta.SquaredEuclideanNorm() > SEG::Square( boundingRadius ) )
return false;
bool contains = false;
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID l )
{
if( contains )
return;
if( GetEffectivePolygon( l, ERROR_INSIDE )->Contains( aPosition, -1, aAccuracy ) )
contains = true;
} );
contains |= GetEffectiveHoleShape()->Collide( aPosition, aAccuracy );
return contains;
}
bool PAD::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
BOX2I arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
BOX2I bbox = GetBoundingBox();
if( aContained )
{
return arect.Contains( bbox );
}
else
{
// Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bbox ) )
return false;
bool hit = false;
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
if( hit )
return;
const std::shared_ptr<SHAPE_POLY_SET>& poly = GetEffectivePolygon( aLayer, ERROR_INSIDE );
int count = poly->TotalVertices();
for( int ii = 0; ii < count; ii++ )
{
VECTOR2I vertex = poly->CVertex( ii );
VECTOR2I vertexNext = poly->CVertex( ( ii + 1 ) % count );
// Test if the point is within aRect
if( arect.Contains( vertex ) )
{
hit = true;
break;
}
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) )
{
hit = true;
break;
}
}
} );
if( !hit )
{
SHAPE_RECT rect( arect );
hit |= GetEffectiveHoleShape()->Collide( &rect );
}
return hit;
}
}
bool PAD::HitTest( const SHAPE_LINE_CHAIN& aPoly, bool aContained ) const
{
SHAPE_COMPOUND effectiveShape;
// Add padstack shapes
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
effectiveShape.AddShape( GetEffectiveShape( aLayer ) );
} );
// Add hole shape
effectiveShape.AddShape( GetEffectiveHoleShape() );
return KIGEOM::ShapeHitTest( aPoly, effectiveShape, aContained );
}
int PAD::Compare( const PAD* aPadRef, const PAD* aPadCmp )
{
int diff;
if( ( diff = static_cast<int>( aPadRef->m_attribute ) - static_cast<int>( aPadCmp->m_attribute ) ) != 0 )
return diff;
return PADSTACK::Compare( &aPadRef->Padstack(), &aPadCmp->Padstack() );
}
void PAD::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
RotatePoint( m_pos, aRotCentre, aAngle );
m_padStack.SetOrientation( m_padStack.GetOrientation() + aAngle );
SetDirty();
}
wxString PAD::ShowPadShape( PCB_LAYER_ID aLayer ) const
{
switch( GetShape( aLayer ) )
{
case PAD_SHAPE::CIRCLE: return _( "Circle" );
case PAD_SHAPE::OVAL: return _( "Oval" );
case PAD_SHAPE::RECTANGLE: return _( "Rect" );
case PAD_SHAPE::TRAPEZOID: return _( "Trap" );
case PAD_SHAPE::ROUNDRECT: return _( "Roundrect" );
case PAD_SHAPE::CHAMFERED_RECT: return _( "Chamferedrect" );
case PAD_SHAPE::CUSTOM: return _( "CustomShape" );
default: return wxT( "???" );
}
}
wxString PAD::ShowPadAttr() const
{
switch( GetAttribute() )
{
case PAD_ATTRIB::PTH: return _( "PTH" );
case PAD_ATTRIB::SMD: return _( "SMD" );
case PAD_ATTRIB::CONN: return _( "Conn" );
case PAD_ATTRIB::NPTH: return _( "NPTH" );
default: return wxT( "???" );
}
}
wxString PAD::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const
{
FOOTPRINT* parentFP = GetParentFootprint();
// Don't report parent footprint info from footprint editor, viewer, etc.
if( GetBoard() && GetBoard()->GetBoardUse() == BOARD_USE::FPHOLDER )
parentFP = nullptr;
if( GetAttribute() == PAD_ATTRIB::NPTH )
{
if( parentFP )
return wxString::Format( _( "NPTH pad of %s" ), parentFP->GetReference() );
else
return _( "NPTH pad" );
}
else if( GetNumber().IsEmpty() )
{
if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN )
{
if( parentFP )
{
return wxString::Format( _( "Pad %s of %s on %s" ),
GetNetnameMsg(),
parentFP->GetReference(),
layerMaskDescribe() );
}
else
{
return wxString::Format( _( "Pad on %s" ),
layerMaskDescribe() );
}
}
else
{
if( parentFP )
{
return wxString::Format( _( "PTH pad %s of %s" ),
GetNetnameMsg(),
parentFP->GetReference() );
}
else
{
return _( "PTH pad" );
}
}
}
else
{
if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN )
{
if( parentFP )
{
return wxString::Format( _( "Pad %s %s of %s on %s" ),
GetNumber(),
GetNetnameMsg(),
parentFP->GetReference(),
layerMaskDescribe() );
}
else
{
return wxString::Format( _( "Pad %s on %s" ),
GetNumber(),
layerMaskDescribe() );
}
}
else
{
if( parentFP )
{
return wxString::Format( _( "PTH pad %s %s of %s" ),
GetNumber(),
GetNetnameMsg(),
parentFP->GetReference() );
}
else
{
return wxString::Format( _( "PTH pad %s" ),
GetNumber() );
}
}
}
}
BITMAPS PAD::GetMenuImage() const
{
return BITMAPS::pad;
}
EDA_ITEM* PAD::Clone() const
{
PAD* cloned = new PAD( *this );
// Ensure the cloned primitives of the pad stack have the right parent
cloned->Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
for( std::shared_ptr<PCB_SHAPE>& primitive : cloned->m_padStack.Primitives( aLayer ) )
primitive->SetParent( cloned );
} );
return cloned;
}
std::vector<int> PAD::ViewGetLayers() const
{
std::vector<int> layers;
layers.reserve( 64 );
// These 2 types of pads contain a hole
if( m_attribute == PAD_ATTRIB::PTH )
{
layers.push_back( LAYER_PAD_PLATEDHOLES );
layers.push_back( LAYER_PAD_HOLEWALLS );
}
if( m_attribute == PAD_ATTRIB::NPTH )
layers.push_back( LAYER_NON_PLATEDHOLES );
if( IsLocked() || ( GetParentFootprint() && GetParentFootprint()->IsLocked() ) )
layers.push_back( LAYER_LOCKED_ITEM_SHADOW );
LSET cuLayers = ( m_padStack.LayerSet() & LSET::AllCuMask() );
// Don't spend cycles rendering layers that aren't visible
if( const BOARD* board = GetBoard() )
cuLayers &= board->GetEnabledLayers();
if( cuLayers.count() > 1 )
{
// Multi layer pad
for( PCB_LAYER_ID layer : cuLayers.Seq() )
{
layers.push_back( LAYER_PAD_COPPER_START + layer );
layers.push_back( LAYER_CLEARANCE_START + layer );
}
layers.push_back( LAYER_PAD_NETNAMES );
}
else if( IsOnLayer( F_Cu ) )
{
layers.push_back( LAYER_PAD_COPPER_START );
layers.push_back( LAYER_CLEARANCE_START );
// Is this a PTH pad that has only front copper? If so, we need to also display the
// net name on the PTH netname layer so that it isn't blocked by the drill hole.
if( m_attribute == PAD_ATTRIB::PTH )
layers.push_back( LAYER_PAD_NETNAMES );
else
layers.push_back( LAYER_PAD_FR_NETNAMES );
}
else if( IsOnLayer( B_Cu ) )
{
layers.push_back( LAYER_PAD_COPPER_START + B_Cu );
layers.push_back( LAYER_CLEARANCE_START + B_Cu );
// Is this a PTH pad that has only back copper? If so, we need to also display the
// net name on the PTH netname layer so that it isn't blocked by the drill hole.
if( m_attribute == PAD_ATTRIB::PTH )
layers.push_back( LAYER_PAD_NETNAMES );
else
layers.push_back( LAYER_PAD_BK_NETNAMES );
}
// Check non-copper layers. This list should include all the layers that the
// footprint editor allows a pad to be placed on.
static const PCB_LAYER_ID layers_mech[] = { F_Mask, B_Mask, F_Paste, B_Paste,
F_Adhes, B_Adhes, F_SilkS, B_SilkS, Dwgs_User, Eco1_User, Eco2_User };
for( PCB_LAYER_ID each_layer : layers_mech )
{
if( IsOnLayer( each_layer ) )
layers.push_back( each_layer );
}
return layers;
}
double PAD::ViewGetLOD( int aLayer, const KIGFX::VIEW* aView ) const
{
PCB_PAINTER& painter = static_cast<PCB_PAINTER&>( *aView->GetPainter() );
PCB_RENDER_SETTINGS& renderSettings = *painter.GetSettings();
const BOARD* board = GetBoard();
// Meta control for hiding all pads
if( !aView->IsLayerVisible( LAYER_PADS ) )
return LOD_HIDE;
// Handle Render tab switches
//const PCB_LAYER_ID& pcbLayer = static_cast<PCB_LAYER_ID>( aLayer );
if( !IsFlipped() && !aView->IsLayerVisible( LAYER_FOOTPRINTS_FR ) )
return LOD_HIDE;
if( IsFlipped() && !aView->IsLayerVisible( LAYER_FOOTPRINTS_BK ) )
return LOD_HIDE;
if( IsHoleLayer( aLayer ) )
{
LSET visiblePhysical = board->GetVisibleLayers();
visiblePhysical &= board->GetEnabledLayers();
visiblePhysical &= LSET::PhysicalLayersMask();
if( !visiblePhysical.any() )
return LOD_HIDE;
}
else if( IsNetnameLayer( aLayer ) )
{
if( renderSettings.GetHighContrast() )
{
// Hide netnames unless pad is flashed to a high-contrast layer
if( !FlashLayer( renderSettings.GetPrimaryHighContrastLayer() ) )
return LOD_HIDE;
}
else
{
LSET visible = board->GetVisibleLayers();
visible &= board->GetEnabledLayers();
// Hide netnames unless pad is flashed to a visible layer
if( !FlashLayer( visible ) )
return LOD_HIDE;
}
// Netnames will be shown only if zoom is appropriate
const int minSize = std::min( GetBoundingBox().GetWidth(), GetBoundingBox().GetHeight() );
return lodScaleForThreshold( aView, minSize, pcbIUScale.mmToIU( 0.5 ) );
}
VECTOR2L padSize = GetBoundingBox().GetSize();
int64_t minSide = std::min( padSize.x, padSize.y );
if( minSide > 0 )
return std::min( lodScaleForThreshold( aView, minSide, pcbIUScale.mmToIU( 0.2 ) ), 3.5 );
return LOD_SHOW;
}
const BOX2I PAD::ViewBBox() const
{
// Bounding box includes soldermask too. Remember mask and/or paste margins can be < 0
int solderMaskMargin = 0;
VECTOR2I solderPasteMargin;
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
solderMaskMargin = std::max( solderMaskMargin, std::max( GetSolderMaskExpansion( aLayer ), 0 ) );
VECTOR2I layerMargin = GetSolderPasteMargin( aLayer );
solderPasteMargin.x = std::max( solderPasteMargin.x, layerMargin.x );
solderPasteMargin.y = std::max( solderPasteMargin.y, layerMargin.y );
} );
BOX2I bbox = GetBoundingBox();
int clearance = 0;
// If we're drawing clearance lines then get the biggest possible clearance
if( PCBNEW_SETTINGS* cfg = dynamic_cast<PCBNEW_SETTINGS*>( Kiface().KifaceSettings() ) )
{
if( cfg && cfg->m_Display.m_PadClearance && GetBoard() )
clearance = GetBoard()->GetMaxClearanceValue();
}
// Look for the biggest possible bounding box
int xMargin = std::max( solderMaskMargin, solderPasteMargin.x ) + clearance;
int yMargin = std::max( solderMaskMargin, solderPasteMargin.y ) + clearance;
return BOX2I( VECTOR2I( bbox.GetOrigin() ) - VECTOR2I( xMargin, yMargin ),
VECTOR2I( bbox.GetSize() ) + VECTOR2I( 2 * xMargin, 2 * yMargin ) );
}
void PAD::ImportSettingsFrom( const PAD& aMasterPad )
{
SetPadstack( aMasterPad.Padstack() );
// Layer Set should be updated before calling SetAttribute()
SetLayerSet( aMasterPad.GetLayerSet() );
SetAttribute( aMasterPad.GetAttribute() );
// Unfortunately, SetAttribute() can change m_layerMask.
// Be sure we keep the original mask by calling SetLayerSet() after SetAttribute()
SetLayerSet( aMasterPad.GetLayerSet() );
SetProperty( aMasterPad.GetProperty() );
// Must be after setting attribute and layerSet
if( !CanHaveNumber() )
SetNumber( wxEmptyString );
// I am not sure the m_LengthPadToDie should be imported, because this is a parameter
// really specific to a given pad (JPC).
#if 0
SetPadToDieLength( aMasterPad.GetPadToDieLength() );
SetPadToDieDelay( aMasterPad.GetPadToDieDelay() );
#endif
// The pad orientation, for historical reasons is the pad rotation + parent rotation.
EDA_ANGLE pad_rot = aMasterPad.GetOrientation();
if( aMasterPad.GetParentFootprint() )
pad_rot -= aMasterPad.GetParentFootprint()->GetOrientation();
if( GetParentFootprint() )
pad_rot += GetParentFootprint()->GetOrientation();
SetOrientation( pad_rot );
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
// Ensure that circles are circles
if( aMasterPad.GetShape( aLayer ) == PAD_SHAPE::CIRCLE )
SetSize( aLayer, VECTOR2I( GetSize( aLayer ).x, GetSize( aLayer ).x ) );
} );
switch( aMasterPad.GetAttribute() )
{
case PAD_ATTRIB::SMD:
case PAD_ATTRIB::CONN:
// These pads do not have a hole (they are expected to be on one external copper layer)
SetDrillSize( VECTOR2I( 0, 0 ) );
break;
default:
;
}
// copy also local settings:
SetLocalClearance( aMasterPad.GetLocalClearance() );
SetLocalSolderMaskMargin( aMasterPad.GetLocalSolderMaskMargin() );
SetLocalSolderPasteMargin( aMasterPad.GetLocalSolderPasteMargin() );
SetLocalSolderPasteMarginRatio( aMasterPad.GetLocalSolderPasteMarginRatio() );
SetLocalZoneConnection( aMasterPad.GetLocalZoneConnection() );
SetLocalThermalSpokeWidthOverride( aMasterPad.GetLocalThermalSpokeWidthOverride() );
SetThermalSpokeAngle( aMasterPad.GetThermalSpokeAngle() );
SetLocalThermalGapOverride( aMasterPad.GetLocalThermalGapOverride() );
SetCustomShapeInZoneOpt( aMasterPad.GetCustomShapeInZoneOpt() );
m_teardropParams = aMasterPad.m_teardropParams;
SetDirty();
}
void PAD::swapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_PAD_T );
std::swap( *this, *static_cast<PAD*>( aImage ) );
}
bool PAD::TransformHoleToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError,
ERROR_LOC aErrorLoc ) const
{
VECTOR2I drillsize = GetDrillSize();
if( !drillsize.x || !drillsize.y )
return false;
std::shared_ptr<SHAPE_SEGMENT> slot = GetEffectiveHoleShape();
TransformOvalToPolygon( aBuffer, slot->GetSeg().A, slot->GetSeg().B, slot->GetWidth() + aClearance * 2,
aError, aErrorLoc );
return true;
}
void PAD::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance,
int aMaxError, ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const
{
wxASSERT_MSG( !ignoreLineWidth, wxT( "IgnoreLineWidth has no meaning for pads." ) );
wxASSERT_MSG( aLayer != UNDEFINED_LAYER,
wxT( "UNDEFINED_LAYER is no longer allowed for PAD::TransformShapeToPolygon" ) );
// minimal segment count to approximate a circle to create the polygonal pad shape
// This minimal value is mainly for very small pads, like SM0402.
// Most of time pads are using the segment count given by aError value.
const int pad_min_seg_per_circle_count = 16;
int dx = m_padStack.Size( aLayer ).x / 2;
int dy = m_padStack.Size( aLayer ).y / 2;
VECTOR2I padShapePos = ShapePos( aLayer ); // Note: for pad having a shape offset, the pad
// position is NOT the shape position
switch( PAD_SHAPE shape = GetShape( aLayer ) )
{
case PAD_SHAPE::CIRCLE:
case PAD_SHAPE::OVAL:
// Note: dx == dy is not guaranteed for circle pads in legacy boards
if( dx == dy || ( shape == PAD_SHAPE::CIRCLE ) )
{
TransformCircleToPolygon( aBuffer, padShapePos, dx + aClearance, aMaxError, aErrorLoc,
pad_min_seg_per_circle_count );
}
else
{
int half_width = std::min( dx, dy );
VECTOR2I delta( dx - half_width, dy - half_width );
RotatePoint( delta, GetOrientation() );
TransformOvalToPolygon( aBuffer, padShapePos - delta, padShapePos + delta,
( half_width + aClearance ) * 2, aMaxError, aErrorLoc,
pad_min_seg_per_circle_count );
}
break;
case PAD_SHAPE::TRAPEZOID:
case PAD_SHAPE::RECTANGLE:
{
const VECTOR2I& trapDelta = m_padStack.TrapezoidDeltaSize( aLayer );
int ddx = shape == PAD_SHAPE::TRAPEZOID ? trapDelta.x / 2 : 0;
int ddy = shape == PAD_SHAPE::TRAPEZOID ? trapDelta.y / 2 : 0;
SHAPE_POLY_SET outline;
TransformTrapezoidToPolygon( outline, padShapePos, m_padStack.Size( aLayer ), GetOrientation(),
ddx, ddy, aClearance, aMaxError, aErrorLoc );
aBuffer.Append( outline );
break;
}
case PAD_SHAPE::CHAMFERED_RECT:
case PAD_SHAPE::ROUNDRECT:
{
bool doChamfer = shape == PAD_SHAPE::CHAMFERED_RECT;
SHAPE_POLY_SET outline;
TransformRoundChamferedRectToPolygon( outline, padShapePos, m_padStack.Size( aLayer ),
GetOrientation(), GetRoundRectCornerRadius( aLayer ),
doChamfer ? GetChamferRectRatio( aLayer ) : 0,
doChamfer ? GetChamferPositions( aLayer ) : 0,
aClearance, aMaxError, aErrorLoc );
aBuffer.Append( outline );
break;
}
case PAD_SHAPE::CUSTOM:
{
SHAPE_POLY_SET outline;
MergePrimitivesAsPolygon( aLayer, &outline, aErrorLoc );
outline.Rotate( GetOrientation() );
outline.Move( VECTOR2I( padShapePos ) );
if( aClearance > 0 || aErrorLoc == ERROR_OUTSIDE )
{
if( aErrorLoc == ERROR_OUTSIDE )
aClearance += aMaxError;
outline.Inflate( aClearance, CORNER_STRATEGY::ROUND_ALL_CORNERS, aMaxError );
outline.Fracture();
}
else if( aClearance < 0 )
{
// Negative clearances are primarily for drawing solder paste layer, so we don't
// worry ourselves overly about which side the error is on.
// aClearance is negative so this is actually a deflate
outline.Inflate( aClearance, CORNER_STRATEGY::ALLOW_ACUTE_CORNERS, aMaxError );
outline.Fracture();
}
aBuffer.Append( outline );
break;
}
default:
wxFAIL_MSG( wxT( "PAD::TransformShapeToPolygon no implementation for " )
+ wxString( std::string( magic_enum::enum_name( shape ) ) ) );
break;
}
}
std::vector<PCB_SHAPE*> PAD::Recombine( bool aIsDryRun, int maxError )
{
FOOTPRINT* footprint = GetParentFootprint();
for( BOARD_ITEM* item : footprint->GraphicalItems() )
item->ClearFlags( SKIP_STRUCT );
auto findNext =
[&]( PCB_LAYER_ID aLayer ) -> PCB_SHAPE*
{
SHAPE_POLY_SET padPoly;
TransformShapeToPolygon( padPoly, aLayer, 0, maxError, ERROR_INSIDE );
for( BOARD_ITEM* item : footprint->GraphicalItems() )
{
PCB_SHAPE* shape = dynamic_cast<PCB_SHAPE*>( item );
if( !shape || ( shape->GetFlags() & SKIP_STRUCT ) )
continue;
if( shape->GetLayer() != aLayer )
continue;
if( shape->IsProxyItem() ) // Pad number (and net name) box
return shape;
SHAPE_POLY_SET drawPoly;
shape->TransformShapeToPolygon( drawPoly, aLayer, 0, maxError, ERROR_INSIDE );
drawPoly.BooleanIntersection( padPoly );
if( !drawPoly.IsEmpty() )
return shape;
}
return nullptr;
};
auto findMatching =
[&]( PCB_SHAPE* aShape ) -> std::vector<PCB_SHAPE*>
{
std::vector<PCB_SHAPE*> matching;
for( BOARD_ITEM* item : footprint->GraphicalItems() )
{
PCB_SHAPE* other = dynamic_cast<PCB_SHAPE*>( item );
if( !other || ( other->GetFlags() & SKIP_STRUCT ) )
continue;
if( GetLayerSet().test( other->GetLayer() ) && aShape->Compare( other ) == 0 )
matching.push_back( other );
}
return matching;
};
PCB_LAYER_ID layer;
std::vector<PCB_SHAPE*> mergedShapes;
if( IsOnLayer( F_Cu ) )
layer = F_Cu;
else if( IsOnLayer( B_Cu ) )
layer = B_Cu;
else
layer = GetLayerSet().UIOrder().front();
PAD_SHAPE origShape = GetShape( layer );
// If there are intersecting items to combine, we need to first make sure the pad is a
// custom-shape pad.
if( !aIsDryRun && findNext( layer ) && origShape != PAD_SHAPE::CUSTOM )
{
if( origShape == PAD_SHAPE::CIRCLE || origShape == PAD_SHAPE::RECTANGLE )
{
// Use the existing pad as an anchor
SetAnchorPadShape( layer, origShape );
SetShape( layer, PAD_SHAPE::CUSTOM );
}
else
{
// Create a new circular anchor and convert existing pad to a polygon primitive
SHAPE_POLY_SET existingOutline;
TransformShapeToPolygon( existingOutline, layer, 0, maxError, ERROR_INSIDE );
int minExtent = std::min( GetSize( layer ).x, GetSize( layer ).y );
SetAnchorPadShape( layer, PAD_SHAPE::CIRCLE );
SetSize( layer, VECTOR2I( minExtent, minExtent ) );
SetShape( layer, PAD_SHAPE::CUSTOM );
PCB_SHAPE* shape = new PCB_SHAPE( nullptr, SHAPE_T::POLY );
shape->SetFilled( true );
shape->SetStroke( STROKE_PARAMS( 0, LINE_STYLE::SOLID ) );
shape->SetPolyShape( existingOutline );
shape->Move( - ShapePos( layer ) );
shape->Rotate( VECTOR2I( 0, 0 ), - GetOrientation() );
AddPrimitive( layer, shape );
}
}
while( PCB_SHAPE* fpShape = findNext( layer ) )
{
fpShape->SetFlags( SKIP_STRUCT );
mergedShapes.push_back( fpShape );
if( !aIsDryRun )
{
// If the editor was inside a group when the pad was exploded, the added exploded shapes
// will be part of the group. Remove them here before duplicating; we don't want the
// primitives to wind up in a group.
if( EDA_GROUP* group = fpShape->GetParentGroup(); group )
group->RemoveItem( fpShape );
PCB_SHAPE* primitive = static_cast<PCB_SHAPE*>( fpShape->Duplicate( IGNORE_PARENT_GROUP ) );
primitive->SetParent( nullptr );
// Convert any hatched fills to solid
if( primitive->IsAnyFill() )
primitive->SetFillMode( FILL_T::FILLED_SHAPE );
primitive->Move( - ShapePos( layer ) );
primitive->Rotate( VECTOR2I( 0, 0 ), - GetOrientation() );
AddPrimitive( layer, primitive );
}
// See if there are other shapes that match and mark them for delete. (KiCad won't
// produce these, but old footprints from other vendors have them.)
for( PCB_SHAPE* other : findMatching( fpShape ) )
{
other->SetFlags( SKIP_STRUCT );
mergedShapes.push_back( other );
}
}
for( BOARD_ITEM* item : footprint->GraphicalItems() )
item->ClearFlags( SKIP_STRUCT );
if( !aIsDryRun )
ClearFlags( ENTERED );
return mergedShapes;
}
void PAD::CheckPad( UNITS_PROVIDER* aUnitsProvider, bool aForPadProperties,
const std::function<void( int aErrorCode, const wxString& aMsg )>& aErrorHandler ) const
{
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
doCheckPad( aLayer, aUnitsProvider, aForPadProperties, aErrorHandler );
} );
LSET padlayers_mask = GetLayerSet();
VECTOR2I drill_size = GetDrillSize();
if( !padlayers_mask[F_Cu] && !padlayers_mask[B_Cu] )
{
if( ( drill_size.x || drill_size.y ) && GetAttribute() != PAD_ATTRIB::NPTH )
{
aErrorHandler( DRCE_PADSTACK, _( "(plated through holes normally have a copper pad on "
"at least one outer layer)" ) );
}
}
if( ( GetProperty() == PAD_PROP::FIDUCIAL_GLBL || GetProperty() == PAD_PROP::FIDUCIAL_LOCAL )
&& GetAttribute() == PAD_ATTRIB::NPTH )
{
aErrorHandler( DRCE_PADSTACK, _( "('fiducial' property makes no sense on NPTH pads)" ) );
}
if( GetProperty() == PAD_PROP::TESTPOINT && GetAttribute() == PAD_ATTRIB::NPTH )
aErrorHandler( DRCE_PADSTACK, _( "('testpoint' property makes no sense on NPTH pads)" ) );
if( GetProperty() == PAD_PROP::HEATSINK && GetAttribute() == PAD_ATTRIB::NPTH )
aErrorHandler( DRCE_PADSTACK, _( "('heatsink' property makes no sense on NPTH pads)" ) );
if( GetProperty() == PAD_PROP::CASTELLATED && GetAttribute() != PAD_ATTRIB::PTH )
aErrorHandler( DRCE_PADSTACK, _( "('castellated' property is for PTH pads)" ) );
if( GetProperty() == PAD_PROP::BGA && GetAttribute() != PAD_ATTRIB::SMD )
aErrorHandler( DRCE_PADSTACK, _( "('BGA' property is for SMD pads)" ) );
if( GetProperty() == PAD_PROP::MECHANICAL && GetAttribute() != PAD_ATTRIB::PTH )
aErrorHandler( DRCE_PADSTACK, _( "('mechanical' property is for PTH pads)" ) );
if( GetProperty() == PAD_PROP::PRESSFIT
&& ( GetAttribute() != PAD_ATTRIB::PTH || !HasDrilledHole() ) )
aErrorHandler( DRCE_PADSTACK, _( "('press-fit' property is for PTH pads with round holes)" ) );
switch( GetAttribute() )
{
case PAD_ATTRIB::NPTH: // Not plated, but through hole, a hole is expected
case PAD_ATTRIB::PTH: // Pad through hole, a hole is also expected
if( drill_size.x <= 0
|| ( drill_size.y <= 0 && GetDrillShape() == PAD_DRILL_SHAPE::OBLONG ) )
{
aErrorHandler( DRCE_PAD_TH_WITH_NO_HOLE, wxEmptyString );
}
break;
case PAD_ATTRIB::CONN: // Connector pads are smd pads, just they do not have solder paste.
if( padlayers_mask[B_Paste] || padlayers_mask[F_Paste] )
{
aErrorHandler( DRCE_PADSTACK, _( "(connector pads normally have no solder paste; use a "
"SMD pad instead)" ) );
}
KI_FALLTHROUGH;
case PAD_ATTRIB::SMD: // SMD and Connector pads (One external copper layer only)
{
if( drill_size.x > 0 || drill_size.y > 0 )
aErrorHandler( DRCE_PADSTACK_INVALID, _( "(SMD pad has a hole)" ) );
LSET innerlayers_mask = padlayers_mask & LSET::InternalCuMask();
if( IsOnLayer( F_Cu ) && IsOnLayer( B_Cu ) )
{
aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has copper on both sides of the board)" ) );
}
else if( IsOnLayer( F_Cu ) )
{
if( IsOnLayer( B_Mask ) )
{
aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has copper and mask layers on different "
"sides of the board)" ) );
}
else if( IsOnLayer( B_Paste ) )
{
aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has copper and paste layers on different "
"sides of the board)" ) );
}
}
else if( IsOnLayer( B_Cu ) )
{
if( IsOnLayer( F_Mask ) )
{
aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has copper and mask layers on different "
"sides of the board)" ) );
}
else if( IsOnLayer( F_Paste ) )
{
aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has copper and paste layers on different "
"sides of the board)" ) );
}
}
else if( innerlayers_mask.count() != 0 )
{
aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has no outer layers)" ) );
}
break;
}
}
}
void PAD::doCheckPad( PCB_LAYER_ID aLayer, UNITS_PROVIDER* aUnitsProvider, bool aForPadProperties,
const std::function<void( int aErrorCode, const wxString& aMsg )>& aErrorHandler ) const
{
wxString msg;
VECTOR2I pad_size = GetSize( aLayer );
if( GetShape( aLayer ) == PAD_SHAPE::CUSTOM )
pad_size = GetBoundingBox().GetSize();
else if( pad_size.x <= 0 || ( pad_size.y <= 0 && GetShape( aLayer ) != PAD_SHAPE::CIRCLE ) )
aErrorHandler( DRCE_PADSTACK_INVALID, _( "(Pad must have a positive size)" ) );
// Test hole against pad shape
if( IsOnCopperLayer() && GetDrillSize().x > 0 )
{
// Ensure the drill size can be handled in next calculations.
// Use min size = 4 IU to be able to build a polygon from a hole shape
const int min_drill_size = 4;
if( GetDrillSizeX() <= min_drill_size || GetDrillSizeY() <= min_drill_size )
{
msg.Printf( _( "(PTH pad hole size must be larger than %s)" ),
aUnitsProvider->StringFromValue( min_drill_size, true ) );
aErrorHandler( DRCE_PADSTACK_INVALID, msg );
}
SHAPE_POLY_SET padOutline;
TransformShapeToPolygon( padOutline, aLayer, 0, GetMaxError(), ERROR_INSIDE );
if( GetAttribute() == PAD_ATTRIB::PTH )
{
// Test if there is copper area outside hole
std::shared_ptr<SHAPE_SEGMENT> hole = GetEffectiveHoleShape();
SHAPE_POLY_SET holeOutline;
TransformOvalToPolygon( holeOutline, hole->GetSeg().A, hole->GetSeg().B, hole->GetWidth(),
GetMaxError(), ERROR_OUTSIDE );
SHAPE_POLY_SET copper = padOutline;
copper.BooleanSubtract( holeOutline );
if( copper.IsEmpty() )
{
aErrorHandler( DRCE_PADSTACK, _( "(PTH pad hole leaves no copper)" ) );
}
else if( aForPadProperties )
{
// Test if the pad hole is fully inside the copper area. Note that we only run
// this check for pad properties because we run the more complete annular ring
// checker on the board (which handles multiple pads with the same name).
holeOutline.BooleanSubtract( padOutline );
if( !holeOutline.IsEmpty() )
aErrorHandler( DRCE_PADSTACK, _( "(PTH pad hole not fully inside copper)" ) );
}
}
else
{
// Test only if the pad hole's centre is inside the copper area
if( !padOutline.Collide( GetPosition() ) )
aErrorHandler( DRCE_PADSTACK, _( "(pad hole not inside pad shape)" ) );
}
}
if( GetLocalClearance().value_or( 0 ) < 0 )
aErrorHandler( DRCE_PADSTACK, _( "(negative local clearance values have no effect)" ) );
// Some pads need a negative solder mask clearance (mainly for BGA with small pads)
// However the negative solder mask clearance must not create negative mask size
// Therefore test for minimal acceptable negative value
std::optional<int> solderMaskMargin = GetLocalSolderMaskMargin();
if( solderMaskMargin.has_value() && solderMaskMargin.value() < 0 )
{
int absMargin = abs( solderMaskMargin.value() );
if( GetShape( aLayer ) == PAD_SHAPE::CUSTOM )
{
for( const std::shared_ptr<PCB_SHAPE>& shape : GetPrimitives( aLayer ) )
{
BOX2I shapeBBox = shape->GetBoundingBox();
if( absMargin > shapeBBox.GetWidth() || absMargin > shapeBBox.GetHeight() )
{
aErrorHandler( DRCE_PADSTACK, _( "(negative solder mask clearance is larger "
"than some shape primitives; results may be "
"surprising)" ) );
break;
}
}
}
else if( absMargin > pad_size.x || absMargin > pad_size.y )
{
aErrorHandler( DRCE_PADSTACK, _( "(negative solder mask clearance is larger than pad; "
"no solder mask will be generated)" ) );
}
}
// Some pads need a positive solder paste clearance (mainly for BGA with small pads)
// However, a positive value can create issues if the resulting shape is too big.
// (like a solder paste creating a solder paste area on a neighbor pad or on the solder mask)
// So we could ask for user to confirm the choice
// For now we just check for disappearing paste
wxSize paste_size;
int paste_margin = GetLocalSolderPasteMargin().value_or( 0 );
double paste_ratio = GetLocalSolderPasteMarginRatio().value_or( 0 );
paste_size.x = pad_size.x + paste_margin + KiROUND( pad_size.x * paste_ratio );
paste_size.y = pad_size.y + paste_margin + KiROUND( pad_size.y * paste_ratio );
if( paste_size.x <= 0 || paste_size.y <= 0 )
{
aErrorHandler( DRCE_PADSTACK, _( "(negative solder paste margin is larger than pad; "
"no solder paste mask will be generated)" ) );
}
if( GetShape( aLayer ) == PAD_SHAPE::ROUNDRECT )
{
if( GetRoundRectRadiusRatio( aLayer ) < 0.0 )
aErrorHandler( DRCE_PADSTACK_INVALID, _( "(negative corner radius is not allowed)" ) );
else if( GetRoundRectRadiusRatio( aLayer ) > 50.0 )
aErrorHandler( DRCE_PADSTACK, _( "(corner size will make pad circular)" ) );
}
else if( GetShape( aLayer ) == PAD_SHAPE::CHAMFERED_RECT )
{
if( GetChamferRectRatio( aLayer ) < 0.0 )
aErrorHandler( DRCE_PADSTACK_INVALID, _( "(negative corner chamfer is not allowed)" ) );
else if( GetChamferRectRatio( aLayer ) > 50.0 )
aErrorHandler( DRCE_PADSTACK_INVALID, _( "(corner chamfer is too large)" ) );
}
else if( GetShape( aLayer ) == PAD_SHAPE::TRAPEZOID )
{
if( ( GetDelta( aLayer ).x < 0 && GetDelta( aLayer ).x < -GetSize( aLayer ).y )
|| ( GetDelta( aLayer ).x > 0 && GetDelta( aLayer ).x > GetSize( aLayer ).y )
|| ( GetDelta( aLayer ).y < 0 && GetDelta( aLayer ).y < -GetSize( aLayer ).x )
|| ( GetDelta( aLayer ).y > 0 && GetDelta( aLayer ).y > GetSize( aLayer ).x ) )
{
aErrorHandler( DRCE_PADSTACK_INVALID, _( "(trapezoid delta is too large)" ) );
}
}
if( GetShape( aLayer ) == PAD_SHAPE::CUSTOM )
{
SHAPE_POLY_SET mergedPolygon;
MergePrimitivesAsPolygon( aLayer, &mergedPolygon );
if( mergedPolygon.OutlineCount() > 1 )
aErrorHandler( DRCE_PADSTACK_INVALID, _( "(custom pad shape must resolve to a single polygon)" ) );
}
}
bool PAD::operator==( const BOARD_ITEM& aBoardItem ) const
{
if( Type() != aBoardItem.Type() )
return false;
if( m_parent && aBoardItem.GetParent() && m_parent->m_Uuid != aBoardItem.GetParent()->m_Uuid )
return false;
const PAD& other = static_cast<const PAD&>( aBoardItem );
return *this == other;
}
bool PAD::operator==( const PAD& aOther ) const
{
if( Padstack() != aOther.Padstack() )
return false;
if( GetPosition() != aOther.GetPosition() )
return false;
if( GetAttribute() != aOther.GetAttribute() )
return false;
return true;
}
double PAD::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return 0.0;
if( m_parent->m_Uuid != aOther.GetParent()->m_Uuid )
return 0.0;
const PAD& other = static_cast<const PAD&>( aOther );
double similarity = 1.0;
if( GetPosition() != other.GetPosition() )
similarity *= 0.9;
if( GetAttribute() != other.GetAttribute() )
similarity *= 0.9;
similarity *= Padstack().Similarity( other.Padstack() );
return similarity;
}
void PAD::AddPrimitivePoly( PCB_LAYER_ID aLayer, const SHAPE_POLY_SET& aPoly, int aThickness,
bool aFilled )
{
// If aPoly has holes, convert it to a polygon with no holes.
SHAPE_POLY_SET poly_no_hole;
poly_no_hole.Append( aPoly );
if( poly_no_hole.HasHoles() )
poly_no_hole.Fracture();
// There should never be multiple shapes, but if there are, we split them into
// primitives so that we can edit them both.
for( int ii = 0; ii < poly_no_hole.OutlineCount(); ++ii )
{
SHAPE_POLY_SET poly_outline( poly_no_hole.COutline( ii ) );
PCB_SHAPE* item = new PCB_SHAPE();
item->SetShape( SHAPE_T::POLY );
item->SetFilled( aFilled );
item->SetPolyShape( poly_outline );
item->SetStroke( STROKE_PARAMS( aThickness, LINE_STYLE::SOLID ) );
item->SetParent( this );
m_padStack.AddPrimitive( item, aLayer );
}
SetDirty();
}
void PAD::AddPrimitivePoly( PCB_LAYER_ID aLayer, const std::vector<VECTOR2I>& aPoly, int aThickness,
bool aFilled )
{
PCB_SHAPE* item = new PCB_SHAPE( nullptr, SHAPE_T::POLY );
item->SetFilled( aFilled );
item->SetPolyPoints( aPoly );
item->SetStroke( STROKE_PARAMS( aThickness, LINE_STYLE::SOLID ) );
item->SetParent( this );
m_padStack.AddPrimitive( item, aLayer );
SetDirty();
}
void PAD::ReplacePrimitives( PCB_LAYER_ID aLayer, const std::vector<std::shared_ptr<PCB_SHAPE>>& aPrimitivesList )
{
// clear old list
DeletePrimitivesList( aLayer );
// Import to the given shape list
if( aPrimitivesList.size() )
AppendPrimitives( aLayer, aPrimitivesList );
SetDirty();
}
void PAD::AppendPrimitives( PCB_LAYER_ID aLayer, const std::vector<std::shared_ptr<PCB_SHAPE>>& aPrimitivesList )
{
// Add duplicates of aPrimitivesList to the pad primitives list:
for( const std::shared_ptr<PCB_SHAPE>& prim : aPrimitivesList )
AddPrimitive( aLayer, new PCB_SHAPE( *prim ) );
SetDirty();
}
void PAD::AddPrimitive( PCB_LAYER_ID aLayer, PCB_SHAPE* aPrimitive )
{
aPrimitive->SetParent( this );
m_padStack.AddPrimitive( aPrimitive, aLayer );
SetDirty();
}
void PAD::DeletePrimitivesList( PCB_LAYER_ID aLayer )
{
if( aLayer == UNDEFINED_LAYER )
{
m_padStack.ForEachUniqueLayer(
[&]( PCB_LAYER_ID l )
{
m_padStack.ClearPrimitives( l );
} );
}
else
{
m_padStack.ClearPrimitives( aLayer);
}
SetDirty();
}
void PAD::MergePrimitivesAsPolygon( PCB_LAYER_ID aLayer, SHAPE_POLY_SET* aMergedPolygon,
ERROR_LOC aErrorLoc ) const
{
aMergedPolygon->RemoveAllContours();
// Add the anchor pad shape in aMergedPolygon, others in aux_polyset:
// The anchor pad is always at 0,0
VECTOR2I padSize = GetSize( aLayer );
switch( GetAnchorPadShape( aLayer ) )
{
case PAD_SHAPE::RECTANGLE:
{
SHAPE_RECT rect( -padSize.x / 2, -padSize.y / 2, padSize.x, padSize.y );
aMergedPolygon->AddOutline( rect.Outline() );
break;
}
default:
case PAD_SHAPE::CIRCLE:
TransformCircleToPolygon( *aMergedPolygon, VECTOR2I( 0, 0 ), padSize.x / 2, GetMaxError(), aErrorLoc );
break;
}
SHAPE_POLY_SET polyset;
for( const std::shared_ptr<PCB_SHAPE>& primitive : m_padStack.Primitives( aLayer ) )
{
if( !primitive->IsProxyItem() )
primitive->TransformShapeToPolygon( polyset, UNDEFINED_LAYER, 0, GetMaxError(), aErrorLoc );
}
polyset.Simplify();
// Merge all polygons with the initial pad anchor shape
if( polyset.OutlineCount() )
{
aMergedPolygon->BooleanAdd( polyset );
aMergedPolygon->Fracture();
}
}
static struct PAD_DESC
{
PAD_DESC()
{
ENUM_MAP<PAD_ATTRIB>::Instance()
.Map( PAD_ATTRIB::PTH, _HKI( "Through-hole" ) )
.Map( PAD_ATTRIB::SMD, _HKI( "SMD" ) )
.Map( PAD_ATTRIB::CONN, _HKI( "Edge connector" ) )
.Map( PAD_ATTRIB::NPTH, _HKI( "NPTH, mechanical" ) );
ENUM_MAP<PAD_SHAPE>::Instance()
.Map( PAD_SHAPE::CIRCLE, _HKI( "Circle" ) )
.Map( PAD_SHAPE::RECTANGLE, _HKI( "Rectangle" ) )
.Map( PAD_SHAPE::OVAL, _HKI( "Oval" ) )
.Map( PAD_SHAPE::TRAPEZOID, _HKI( "Trapezoid" ) )
.Map( PAD_SHAPE::ROUNDRECT, _HKI( "Rounded rectangle" ) )
.Map( PAD_SHAPE::CHAMFERED_RECT, _HKI( "Chamfered rectangle" ) )
.Map( PAD_SHAPE::CUSTOM, _HKI( "Custom" ) );
ENUM_MAP<PAD_PROP>::Instance()
.Map( PAD_PROP::NONE, _HKI( "None" ) )
.Map( PAD_PROP::BGA, _HKI( "BGA pad" ) )
.Map( PAD_PROP::FIDUCIAL_GLBL, _HKI( "Fiducial, global to board" ) )
.Map( PAD_PROP::FIDUCIAL_LOCAL, _HKI( "Fiducial, local to footprint" ) )
.Map( PAD_PROP::TESTPOINT, _HKI( "Test point pad" ) )
.Map( PAD_PROP::HEATSINK, _HKI( "Heatsink pad" ) )
.Map( PAD_PROP::CASTELLATED, _HKI( "Castellated pad" ) )
.Map( PAD_PROP::MECHANICAL, _HKI( "Mechanical pad" ) )
.Map( PAD_PROP::PRESSFIT, _HKI( "Press-fit pad" ) );
ENUM_MAP<PAD_DRILL_SHAPE>::Instance()
.Map( PAD_DRILL_SHAPE::CIRCLE, _HKI( "Round" ) )
.Map( PAD_DRILL_SHAPE::OBLONG, _HKI( "Oblong" ) );
ENUM_MAP<ZONE_CONNECTION>& zcMap = ENUM_MAP<ZONE_CONNECTION>::Instance();
if( zcMap.Choices().GetCount() == 0 )
{
zcMap.Undefined( ZONE_CONNECTION::INHERITED );
zcMap.Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) )
.Map( ZONE_CONNECTION::NONE, _HKI( "None" ) )
.Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) )
.Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) )
.Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Thermal reliefs for PTH" ) );
}
ENUM_MAP<PADSTACK::UNCONNECTED_LAYER_MODE>::Instance()
.Map( PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL, _HKI( "All copper layers" ) )
.Map( PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL, _HKI( "Connected layers only" ) )
.Map( PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END,
_HKI( "Front, back and connected layers" ) )
.Map( PADSTACK::UNCONNECTED_LAYER_MODE::START_END_ONLY,
_HKI( "Start and end layers only" ) );
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( PAD );
propMgr.InheritsAfter( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
propMgr.Mask( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ) );
propMgr.Mask( TYPE_HASH( PAD ), TYPE_HASH( BOARD_ITEM ), _HKI( "Locked" ) );
propMgr.AddProperty( new PROPERTY<PAD, double>( _HKI( "Orientation" ),
&PAD::SetOrientationDegrees, &PAD::GetOrientationDegrees,
PROPERTY_DISPLAY::PT_DEGREE ) );
auto isCopperPad =
[]( INSPECTABLE* aItem ) -> bool
{
if( PAD* pad = dynamic_cast<PAD*>( aItem ) )
return pad->GetAttribute() != PAD_ATTRIB::NPTH;
return false;
};
auto padCanHaveHole =
[]( INSPECTABLE* aItem ) -> bool
{
if( PAD* pad = dynamic_cast<PAD*>( aItem ) )
return pad->GetAttribute() == PAD_ATTRIB::PTH || pad->GetAttribute() == PAD_ATTRIB::NPTH;
return false;
};
auto hasNormalPadstack =
[]( INSPECTABLE* aItem ) -> bool
{
if( PAD* pad = dynamic_cast<PAD*>( aItem ) )
return pad->Padstack().Mode() == PADSTACK::MODE::NORMAL;
return true;
};
propMgr.OverrideAvailability( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Net" ),
isCopperPad );
propMgr.OverrideAvailability( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Net Class" ),
isCopperPad );
const wxString groupPad = _HKI( "Pad Properties" );
propMgr.AddProperty( new PROPERTY_ENUM<PAD, PAD_ATTRIB>( _HKI( "Pad Type" ),
&PAD::SetAttribute, &PAD::GetAttribute ), groupPad );
propMgr.AddProperty( new PROPERTY_ENUM<PAD, PAD_SHAPE>( _HKI( "Pad Shape" ),
&PAD::SetFrontShape, &PAD::GetFrontShape ), groupPad )
.SetAvailableFunc( hasNormalPadstack );
propMgr.AddProperty( new PROPERTY<PAD, wxString>( _HKI( "Pad Number" ),
&PAD::SetNumber, &PAD::GetNumber ), groupPad )
.SetAvailableFunc( isCopperPad );
propMgr.AddProperty( new PROPERTY<PAD, wxString>( _HKI( "Pin Name" ),
&PAD::SetPinFunction, &PAD::GetPinFunction ), groupPad )
.SetIsHiddenFromLibraryEditors();
propMgr.AddProperty( new PROPERTY<PAD, wxString>( _HKI( "Pin Type" ),
&PAD::SetPinType, &PAD::GetPinType ), groupPad )
.SetIsHiddenFromLibraryEditors()
.SetChoicesFunc( []( INSPECTABLE* aItem )
{
wxPGChoices choices;
for( int ii = 0; ii < ELECTRICAL_PINTYPES_TOTAL; ii++ )
choices.Add( GetCanonicalElectricalTypeName( (ELECTRICAL_PINTYPE) ii ) );
return choices;
} );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Size X" ),
&PAD::SetSizeX, &PAD::GetSizeX, PROPERTY_DISPLAY::PT_SIZE ), groupPad )
.SetAvailableFunc( hasNormalPadstack );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Size Y" ),
&PAD::SetSizeY, &PAD::GetSizeY, PROPERTY_DISPLAY::PT_SIZE ), groupPad )
.SetAvailableFunc( []( INSPECTABLE* aItem ) -> bool
{
if( PAD* pad = dynamic_cast<PAD*>( aItem ) )
{
// Custom padstacks can't have size modified through panel
if( pad->Padstack().Mode() != PADSTACK::MODE::NORMAL )
return false;
// Circle pads have no usable y-size
return pad->GetShape( PADSTACK::ALL_LAYERS ) != PAD_SHAPE::CIRCLE;
}
return true;
} );
const auto hasRoundRadius =
[]( INSPECTABLE* aItem ) -> bool
{
if( PAD* pad = dynamic_cast<PAD*>( aItem ) )
{
// Custom padstacks can't have this property modified through panel
if( pad->Padstack().Mode() != PADSTACK::MODE::NORMAL )
return false;
return PAD_UTILS::PadHasMeaningfulRoundingRadius( *pad, F_Cu );
}
return false;
};
propMgr.AddProperty( new PROPERTY<PAD, double>( _HKI( "Corner Radius Ratio" ),
&PAD::SetFrontRoundRectRadiusRatio, &PAD::GetFrontRoundRectRadiusRatio ), groupPad )
.SetAvailableFunc( hasRoundRadius );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Corner Radius Size" ),
&PAD::SetFrontRoundRectRadiusSize, &PAD::GetFrontRoundRectRadiusSize, PROPERTY_DISPLAY::PT_SIZE ),
groupPad )
.SetAvailableFunc( hasRoundRadius );
propMgr.AddProperty( new PROPERTY_ENUM<PAD, PAD_DRILL_SHAPE>( _HKI( "Hole Shape" ),
&PAD::SetDrillShape, &PAD::GetDrillShape ), groupPad )
.SetWriteableFunc( padCanHaveHole );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Hole Size X" ),
&PAD::SetDrillSizeX, &PAD::GetDrillSizeX, PROPERTY_DISPLAY::PT_SIZE ), groupPad )
.SetWriteableFunc( padCanHaveHole )
.SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Hole Size Y" ),
&PAD::SetDrillSizeY, &PAD::GetDrillSizeY, PROPERTY_DISPLAY::PT_SIZE ), groupPad )
.SetWriteableFunc( padCanHaveHole )
.SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator )
.SetAvailableFunc( []( INSPECTABLE* aItem ) -> bool
{
// Circle holes have no usable y-size
if( PAD* pad = dynamic_cast<PAD*>( aItem ) )
return pad->GetDrillShape() != PAD_DRILL_SHAPE::CIRCLE;
return true;
} );
propMgr.AddProperty( new PROPERTY_ENUM<PAD, PAD_PROP>( _HKI( "Fabrication Property" ),
&PAD::SetProperty, &PAD::GetProperty ), groupPad );
propMgr.AddProperty( new PROPERTY_ENUM<PAD, PADSTACK::UNCONNECTED_LAYER_MODE>( _HKI( "Copper Layers" ),
&PAD::SetUnconnectedLayerMode, &PAD::GetUnconnectedLayerMode ), groupPad );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Pad To Die Length" ),
&PAD::SetPadToDieLength, &PAD::GetPadToDieLength, PROPERTY_DISPLAY::PT_SIZE ), groupPad )
.SetAvailableFunc( isCopperPad );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Pad To Die Delay" ),
&PAD::SetPadToDieDelay, &PAD::GetPadToDieDelay, PROPERTY_DISPLAY::PT_TIME ), groupPad )
.SetAvailableFunc( isCopperPad );
const wxString groupOverrides = _HKI( "Overrides" );
propMgr.AddProperty( new PROPERTY<PAD, std::optional<int>>( _HKI( "Clearance Override" ),
&PAD::SetLocalClearance, &PAD::GetLocalClearance, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides );
propMgr.AddProperty( new PROPERTY<PAD, std::optional<int>>( _HKI( "Soldermask Margin Override" ),
&PAD::SetLocalSolderMaskMargin, &PAD::GetLocalSolderMaskMargin, PROPERTY_DISPLAY::PT_SIZE ),
groupOverrides );
propMgr.AddProperty( new PROPERTY<PAD, std::optional<int>>( _HKI( "Solderpaste Margin Override" ),
&PAD::SetLocalSolderPasteMargin, &PAD::GetLocalSolderPasteMargin, PROPERTY_DISPLAY::PT_SIZE ),
groupOverrides );
propMgr.AddProperty( new PROPERTY<PAD, std::optional<double>>( _HKI( "Solderpaste Margin Ratio Override" ),
&PAD::SetLocalSolderPasteMarginRatio, &PAD::GetLocalSolderPasteMarginRatio,
PROPERTY_DISPLAY::PT_RATIO ), groupOverrides );
propMgr.AddProperty( new PROPERTY_ENUM<PAD, ZONE_CONNECTION>( _HKI( "Zone Connection Style" ),
&PAD::SetLocalZoneConnection, &PAD::GetLocalZoneConnection ), groupOverrides );
constexpr int minZoneWidth = pcbIUScale.mmToIU( ZONE_THICKNESS_MIN_VALUE_MM );
propMgr.AddProperty( new PROPERTY<PAD, std::optional<int>>( _HKI( "Thermal Relief Spoke Width" ),
&PAD::SetLocalThermalSpokeWidthOverride, &PAD::GetLocalThermalSpokeWidthOverride,
PROPERTY_DISPLAY::PT_SIZE ), groupOverrides )
.SetValidator( PROPERTY_VALIDATORS::RangeIntValidator<minZoneWidth, INT_MAX> );
propMgr.AddProperty( new PROPERTY<PAD, double>( _HKI( "Thermal Relief Spoke Angle" ),
&PAD::SetThermalSpokeAngleDegrees, &PAD::GetThermalSpokeAngleDegrees,
PROPERTY_DISPLAY::PT_DEGREE ), groupOverrides );
propMgr.AddProperty( new PROPERTY<PAD, std::optional<int>>( _HKI( "Thermal Relief Gap" ),
&PAD::SetLocalThermalGapOverride, &PAD::GetLocalThermalGapOverride,
PROPERTY_DISPLAY::PT_SIZE ), groupOverrides )
.SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator );
// TODO delta, drill shape offset, layer set
}
} _PAD_DESC;
ENUM_TO_WXANY( PAD_ATTRIB );
ENUM_TO_WXANY( PAD_SHAPE );
ENUM_TO_WXANY( PAD_PROP );
ENUM_TO_WXANY( PAD_DRILL_SHAPE );