/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include // for KiROUND #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kiface_base.h" #include "pcbnew_settings.h" #include #include #include using KIGFX::PCB_PAINTER; using KIGFX::PCB_RENDER_SETTINGS; PAD::PAD( FOOTPRINT* parent ) : BOARD_CONNECTED_ITEM( parent, PCB_PAD_T ), m_padStack( this ) { VECTOR2I& drill = m_padStack.Drill().size; m_padStack.SetSize( { EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 60 ), EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 60 ) }, PADSTACK::ALL_LAYERS ); drill.x = drill.y = EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 30 ); // Default drill size 30 mils. m_lengthPadToDie = 0; m_delayPadToDie = 0; if( m_parent && m_parent->Type() == PCB_FOOTPRINT_T ) m_pos = GetParent()->GetPosition(); SetShape( F_Cu, PAD_SHAPE::CIRCLE ); // Default pad shape is PAD_CIRCLE. SetAnchorPadShape( F_Cu, PAD_SHAPE::CIRCLE ); // Default shape for custom shaped pads // is PAD_CIRCLE. SetDrillShape( PAD_DRILL_SHAPE::CIRCLE ); // Default pad drill shape is a circle. m_attribute = PAD_ATTRIB::PTH; // Default pad type is plated through hole SetProperty( PAD_PROP::NONE ); // no special fabrication property // Parameters for round rect only: m_padStack.SetRoundRectRadiusRatio( 0.25, F_Cu ); // from IPC-7351C standard // Parameters for chamfered rect only: m_padStack.SetChamferRatio( 0.2, F_Cu ); m_padStack.SetChamferPositions( RECT_NO_CHAMFER, F_Cu ); // Set layers mask to default for a standard thru hole pad. m_padStack.SetLayerSet( PTHMask() ); SetSubRatsnest( 0 ); // used in ratsnest calculations SetDirty(); m_effectiveBoundingRadius = 0; for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu, BoardCopperLayerCount() ) ) m_zoneLayerOverrides[layer] = ZLO_NONE; m_lastGalZoomLevel = 0.0; } PAD::PAD( const PAD& aOther ) : BOARD_CONNECTED_ITEM( aOther.GetParent(), PCB_PAD_T ), m_padStack( this ) { PAD::operator=( aOther ); const_cast( m_Uuid ) = aOther.m_Uuid; } PAD& PAD::operator=( const PAD &aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther ); ImportSettingsFrom( aOther ); SetPadToDieLength( aOther.GetPadToDieLength() ); SetPadToDieDelay( aOther.GetPadToDieDelay() ); SetPosition( aOther.GetPosition() ); SetNumber( aOther.GetNumber() ); SetPinType( aOther.GetPinType() ); SetPinFunction( aOther.GetPinFunction() ); SetSubRatsnest( aOther.GetSubRatsnest() ); m_effectiveBoundingRadius = aOther.m_effectiveBoundingRadius; return *this; } void PAD::CopyFrom( const BOARD_ITEM* aOther ) { wxCHECK( aOther && aOther->Type() == PCB_PAD_T, /* void */ ); *this = *static_cast( aOther ); } void PAD::Serialize( google::protobuf::Any &aContainer ) const { using namespace kiapi::board::types; Pad pad; pad.mutable_id()->set_value( m_Uuid.AsStdString() ); kiapi::common::PackVector2( *pad.mutable_position(), GetPosition() ); pad.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED : kiapi::common::types::LockedState::LS_UNLOCKED ); PackNet( pad.mutable_net() ); pad.set_number( GetNumber().ToUTF8() ); pad.set_type( ToProtoEnum( GetAttribute() ) ); pad.mutable_pad_to_die_length()->set_value_nm( GetPadToDieLength() ); pad.mutable_pad_to_die_delay()->set_value_as( GetPadToDieDelay() ); google::protobuf::Any padStackMsg; m_padStack.Serialize( padStackMsg ); padStackMsg.UnpackTo( pad.mutable_pad_stack() ); if( GetLocalClearance().has_value() ) pad.mutable_copper_clearance_override()->set_value_nm( *GetLocalClearance() ); aContainer.PackFrom( pad ); } bool PAD::Deserialize( const google::protobuf::Any &aContainer ) { kiapi::board::types::Pad pad; if( !aContainer.UnpackTo( &pad ) ) return false; const_cast( m_Uuid ) = KIID( pad.id().value() ); SetPosition( kiapi::common::UnpackVector2( pad.position() ) ); UnpackNet( pad.net() ); SetLocked( pad.locked() == kiapi::common::types::LockedState::LS_LOCKED ); SetAttribute( FromProtoEnum( pad.type() ) ); SetNumber( wxString::FromUTF8( pad.number() ) ); SetPadToDieLength( pad.pad_to_die_length().value_nm() ); SetPadToDieDelay( pad.pad_to_die_delay().value_as() ); google::protobuf::Any padStackWrapper; padStackWrapper.PackFrom( pad.pad_stack() ); m_padStack.Deserialize( padStackWrapper ); SetLayer( m_padStack.StartLayer() ); if( pad.has_copper_clearance_override() ) SetLocalClearance( pad.copper_clearance_override().value_nm() ); else SetLocalClearance( std::nullopt ); return true; } void PAD::ClearZoneLayerOverrides() { std::unique_lock cacheLock( m_zoneLayerOverridesMutex ); for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu, BoardCopperLayerCount() ) ) m_zoneLayerOverrides[layer] = ZLO_NONE; } const ZONE_LAYER_OVERRIDE& PAD::GetZoneLayerOverride( PCB_LAYER_ID aLayer ) const { std::unique_lock cacheLock( m_zoneLayerOverridesMutex ); static const ZONE_LAYER_OVERRIDE defaultOverride = ZLO_NONE; auto it = m_zoneLayerOverrides.find( aLayer ); return it != m_zoneLayerOverrides.end() ? it->second : defaultOverride; } void PAD::SetZoneLayerOverride( PCB_LAYER_ID aLayer, ZONE_LAYER_OVERRIDE aOverride ) { std::unique_lock cacheLock( m_zoneLayerOverridesMutex ); m_zoneLayerOverrides[aLayer] = aOverride; } bool PAD::CanHaveNumber() const { // Aperture pads don't get a number if( IsAperturePad() ) return false; // NPTH pads don't get numbers if( GetAttribute() == PAD_ATTRIB::NPTH ) return false; return true; } bool PAD::IsLocked() const { if( GetParent() && GetParent()->IsLocked() ) return true; return BOARD_ITEM::IsLocked(); }; bool PAD::SharesNetTieGroup( const PAD* aOther ) const { FOOTPRINT* parentFp = GetParentFootprint(); if( parentFp && parentFp->IsNetTie() && aOther->GetParentFootprint() == parentFp ) { std::map padToNetTieGroupMap = parentFp->MapPadNumbersToNetTieGroups(); int thisNetTieGroup = padToNetTieGroupMap[ GetNumber() ]; int otherNetTieGroup = padToNetTieGroupMap[ aOther->GetNumber() ]; return thisNetTieGroup >= 0 && thisNetTieGroup == otherNetTieGroup; } return false; } bool PAD::IsNoConnectPad() const { return m_pinType.Contains( wxT( "no_connect" ) ); } bool PAD::IsFreePad() const { return GetShortNetname().StartsWith( wxT( "unconnected-(" ) ) && m_pinType == wxT( "free" ); } LSET PAD::PTHMask() { static LSET saved = LSET::AllCuMask() | LSET( { F_Mask, B_Mask } ); return saved; } LSET PAD::SMDMask() { static LSET saved( { F_Cu, F_Paste, F_Mask } ); return saved; } LSET PAD::ConnSMDMask() { static LSET saved( { F_Cu, F_Mask } ); return saved; } LSET PAD::UnplatedHoleMask() { static LSET saved = LSET( { F_Cu, B_Cu, F_Mask, B_Mask } ); return saved; } LSET PAD::ApertureMask() { static LSET saved( { F_Paste } ); return saved; } bool PAD::IsFlipped() const { FOOTPRINT* parent = GetParentFootprint(); return ( parent && parent->GetLayer() == B_Cu ); } PCB_LAYER_ID PAD::GetLayer() const { return BOARD_ITEM::GetLayer(); } PCB_LAYER_ID PAD::GetPrincipalLayer() const { if( m_attribute == PAD_ATTRIB::SMD || m_attribute == PAD_ATTRIB::CONN || GetLayerSet().none() ) return m_layer; else return GetLayerSet().Seq().front(); } bool PAD::FlashLayer( const LSET& aLayers ) const { for( PCB_LAYER_ID layer : aLayers ) { if( FlashLayer( layer ) ) return true; } return false; } bool PAD::FlashLayer( int aLayer, bool aOnlyCheckIfPermitted ) const { if( aLayer == UNDEFINED_LAYER ) return true; // Sometimes this is called with GAL layers and should just return true if( aLayer > PCB_LAYER_ID_COUNT ) return true; PCB_LAYER_ID layer = static_cast( aLayer ); if( !IsOnLayer( layer ) ) return false; if( GetAttribute() == PAD_ATTRIB::NPTH && IsCopperLayer( aLayer ) ) { if( GetShape( layer ) == PAD_SHAPE::CIRCLE && GetDrillShape() == PAD_DRILL_SHAPE::CIRCLE ) { if( GetOffset( layer ) == VECTOR2I( 0, 0 ) && GetDrillSize().x >= GetSize( layer ).x ) return false; } else if( GetShape( layer ) == PAD_SHAPE::OVAL && GetDrillShape() == PAD_DRILL_SHAPE::OBLONG ) { if( GetOffset( layer ) == VECTOR2I( 0, 0 ) && GetDrillSize().x >= GetSize( layer ).x && GetDrillSize().y >= GetSize( layer ).y ) { return false; } } } if( LSET::FrontBoardTechMask().test( aLayer ) ) aLayer = F_Cu; else if( LSET::BackBoardTechMask().test( aLayer ) ) aLayer = B_Cu; if( GetAttribute() == PAD_ATTRIB::PTH && IsCopperLayer( aLayer ) ) { PADSTACK::UNCONNECTED_LAYER_MODE mode = m_padStack.UnconnectedLayerMode(); if( mode == PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL ) return true; // Plated through hole pads need copper on the top/bottom layers for proper soldering // Unless the user has removed them in the pad dialog if( mode == PADSTACK::UNCONNECTED_LAYER_MODE::START_END_ONLY ) { return aLayer == m_padStack.Drill().start || aLayer == m_padStack.Drill().end; } if( mode == PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END && IsExternalCopperLayer( aLayer ) ) { return true; } if( const BOARD* board = GetBoard() ) { if( GetZoneLayerOverride( layer ) == ZLO_FORCE_FLASHED ) { return true; } else if( aOnlyCheckIfPermitted ) { return true; } else { // Must be static to keep from raising its ugly head in performance profiles static std::initializer_list nonZoneTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T }; return board->GetConnectivity()->IsConnectedOnLayer( this, aLayer, nonZoneTypes ); } } } return true; } void PAD::SetDrillSizeX( const int aX ) { m_padStack.Drill().size.x = aX; if( GetDrillShape() == PAD_DRILL_SHAPE::CIRCLE ) SetDrillSizeY( aX ); SetDirty(); } void PAD::SetDrillShape( PAD_DRILL_SHAPE aShape ) { m_padStack.Drill().shape = aShape; if( aShape == PAD_DRILL_SHAPE::CIRCLE ) SetDrillSizeY( GetDrillSizeX() ); m_shapesDirty = true; } int PAD::GetRoundRectCornerRadius( PCB_LAYER_ID aLayer ) const { return m_padStack.RoundRectRadius( aLayer ); } void PAD::SetRoundRectCornerRadius( PCB_LAYER_ID aLayer, double aRadius ) { m_padStack.SetRoundRectRadius( aRadius, aLayer ); } void PAD::SetRoundRectRadiusRatio( PCB_LAYER_ID aLayer, double aRadiusScale ) { m_padStack.SetRoundRectRadiusRatio( std::clamp( aRadiusScale, 0.0, 0.5 ), aLayer ); SetDirty(); } void PAD::SetFrontRoundRectRadiusRatio( double aRadiusScale ) { wxASSERT_MSG( m_padStack.Mode() == PADSTACK::MODE::NORMAL, "Set front radius only meaningful for normal padstacks" ); m_padStack.SetRoundRectRadiusRatio( std::clamp( aRadiusScale, 0.0, 0.5 ), F_Cu ); SetDirty(); } void PAD::SetFrontRoundRectRadiusSize( int aRadius ) { const VECTOR2I size = m_padStack.Size( F_Cu ); const int minSize = std::min( size.x, size.y ); const double newRatio = aRadius / double( minSize ); SetFrontRoundRectRadiusRatio( newRatio ); } int PAD::GetFrontRoundRectRadiusSize() const { const VECTOR2I size = m_padStack.Size( F_Cu ); const int minSize = std::min( size.x, size.y ); const double ratio = GetFrontRoundRectRadiusRatio(); return KiROUND( ratio * minSize ); } void PAD::SetChamferRectRatio( PCB_LAYER_ID aLayer, double aChamferScale ) { m_padStack.SetChamferRatio( aChamferScale, aLayer ); SetDirty(); } const std::shared_ptr& PAD::GetEffectivePolygon( PCB_LAYER_ID aLayer, ERROR_LOC aErrorLoc ) const { if( m_polyDirty[ aErrorLoc ] ) BuildEffectivePolygon( aErrorLoc ); aLayer = Padstack().EffectiveLayerFor( aLayer ); return m_effectivePolygons[ aLayer ][ aErrorLoc ]; } std::shared_ptr PAD::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING flashPTHPads ) const { if( aLayer == Edge_Cuts ) { std::shared_ptr effective_compund = std::make_shared(); if( GetAttribute() == PAD_ATTRIB::PTH || GetAttribute() == PAD_ATTRIB::NPTH ) { effective_compund->AddShape( GetEffectiveHoleShape() ); return effective_compund; } else { effective_compund->AddShape( std::make_shared() ); return effective_compund; } } if( GetAttribute() == PAD_ATTRIB::PTH ) { bool flash; std::shared_ptr effective_compund = std::make_shared(); if( flashPTHPads == FLASHING::NEVER_FLASHED ) flash = false; else if( flashPTHPads == FLASHING::ALWAYS_FLASHED ) flash = true; else flash = FlashLayer( aLayer ); if( !flash ) { if( GetAttribute() == PAD_ATTRIB::PTH ) { effective_compund->AddShape( GetEffectiveHoleShape() ); return effective_compund; } else { effective_compund->AddShape( std::make_shared() ); return effective_compund; } } } if( m_shapesDirty ) BuildEffectiveShapes(); aLayer = Padstack().EffectiveLayerFor( aLayer ); wxCHECK_MSG( m_effectiveShapes.contains( aLayer ), nullptr, wxString::Format( wxT( "Missing shape in PAD::GetEffectiveShape for layer %s." ), magic_enum::enum_name( aLayer ) ) ); wxCHECK_MSG( m_effectiveShapes.at( aLayer ), nullptr, wxString::Format( wxT( "Null shape in PAD::GetEffectiveShape for layer %s." ), magic_enum::enum_name( aLayer ) ) ); return m_effectiveShapes[aLayer]; } std::shared_ptr PAD::GetEffectiveHoleShape() const { if( m_shapesDirty ) BuildEffectiveShapes(); return m_effectiveHoleShape; } int PAD::GetBoundingRadius() const { if( m_polyDirty[ ERROR_OUTSIDE ] ) BuildEffectivePolygon( ERROR_OUTSIDE ); return m_effectiveBoundingRadius; } void PAD::BuildEffectiveShapes() const { std::lock_guard RAII_lock( m_shapesBuildingLock ); // If we had to wait for the lock then we were probably waiting for someone else to // finish rebuilding the shapes. So check to see if they're clean now. if( !m_shapesDirty ) return; m_effectiveBoundingBox = BOX2I(); Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { const SHAPE_COMPOUND& layerShape = buildEffectiveShape( aLayer ); m_effectiveBoundingBox.Merge( layerShape.BBox() ); } ); // Hole shape m_effectiveHoleShape = nullptr; VECTOR2I half_size = m_padStack.Drill().size / 2; int half_width; VECTOR2I half_len; if( m_padStack.Drill().shape == PAD_DRILL_SHAPE::CIRCLE ) { half_width = half_size.x; } else { half_width = std::min( half_size.x, half_size.y ); half_len = VECTOR2I( half_size.x - half_width, half_size.y - half_width ); } RotatePoint( half_len, GetOrientation() ); m_effectiveHoleShape = std::make_shared( m_pos - half_len, m_pos + half_len, half_width * 2 ); m_effectiveBoundingBox.Merge( m_effectiveHoleShape->BBox() ); // All done m_shapesDirty = false; } const SHAPE_COMPOUND& PAD::buildEffectiveShape( PCB_LAYER_ID aLayer ) const { m_effectiveShapes[aLayer] = std::make_shared(); auto add = [this, aLayer]( SHAPE* aShape ) { m_effectiveShapes[aLayer]->AddShape( aShape ); }; VECTOR2I shapePos = ShapePos( aLayer ); // Fetch only once; rotation involves trig PAD_SHAPE effectiveShape = GetShape( aLayer ); const VECTOR2I& size = m_padStack.Size( aLayer ); if( effectiveShape == PAD_SHAPE::CUSTOM ) effectiveShape = GetAnchorPadShape( aLayer ); switch( effectiveShape ) { case PAD_SHAPE::CIRCLE: add( new SHAPE_CIRCLE( shapePos, size.x / 2 ) ); break; case PAD_SHAPE::OVAL: if( size.x == size.y ) // the oval pad is in fact a circle { add( new SHAPE_CIRCLE( shapePos, size.x / 2 ) ); } else { VECTOR2I half_size = size / 2; int half_width = std::min( half_size.x, half_size.y ); VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width ); RotatePoint( half_len, GetOrientation() ); add( new SHAPE_SEGMENT( shapePos - half_len, shapePos + half_len, half_width * 2 ) ); } break; case PAD_SHAPE::RECTANGLE: case PAD_SHAPE::TRAPEZOID: case PAD_SHAPE::ROUNDRECT: { int r = ( effectiveShape == PAD_SHAPE::ROUNDRECT ) ? GetRoundRectCornerRadius( aLayer ) : 0; VECTOR2I half_size( size.x / 2, size.y / 2 ); VECTOR2I trap_delta( 0, 0 ); if( r ) { half_size -= VECTOR2I( r, r ); // Avoid degenerated shapes (0 length segments) that always create issues // For roundrect pad very near a circle, use only a circle const int min_len = pcbIUScale.mmToIU( 0.0001 ); if( half_size.x < min_len && half_size.y < min_len ) { add( new SHAPE_CIRCLE( shapePos, r ) ); break; } } else if( effectiveShape == PAD_SHAPE::TRAPEZOID ) { trap_delta = m_padStack.TrapezoidDeltaSize( aLayer ) / 2; } SHAPE_LINE_CHAIN corners; corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x ); corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x ); corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x ); corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x ); corners.Rotate( GetOrientation() ); corners.Move( shapePos ); // GAL renders rectangles faster than 4-point polygons so it's worth checking if our // body shape is a rectangle. if( corners.PointCount() == 4 && ( ( corners.CPoint( 0 ).y == corners.CPoint( 1 ).y && corners.CPoint( 1 ).x == corners.CPoint( 2 ).x && corners.CPoint( 2 ).y == corners.CPoint( 3 ).y && corners.CPoint( 3 ).x == corners.CPoint( 0 ).x ) || ( corners.CPoint( 0 ).x == corners.CPoint( 1 ).x && corners.CPoint( 1 ).y == corners.CPoint( 2 ).y && corners.CPoint( 2 ).x == corners.CPoint( 3 ).x && corners.CPoint( 3 ).y == corners.CPoint( 0 ).y ) ) ) { int width = std::abs( corners.CPoint( 2 ).x - corners.CPoint( 0 ).x ); int height = std::abs( corners.CPoint( 2 ).y - corners.CPoint( 0 ).y ); VECTOR2I pos( std::min( corners.CPoint( 2 ).x, corners.CPoint( 0 ).x ), std::min( corners.CPoint( 2 ).y, corners.CPoint( 0 ).y ) ); add( new SHAPE_RECT( pos, width, height ) ); } else { add( new SHAPE_SIMPLE( corners ) ); } if( r ) { add( new SHAPE_SEGMENT( corners.CPoint( 0 ), corners.CPoint( 1 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 1 ), corners.CPoint( 2 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 2 ), corners.CPoint( 3 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 3 ), corners.CPoint( 0 ), r * 2 ) ); } } break; case PAD_SHAPE::CHAMFERED_RECT: { SHAPE_POLY_SET outline; TransformRoundChamferedRectToPolygon( outline, shapePos, GetSize( aLayer ), GetOrientation(), GetRoundRectCornerRadius( aLayer ), GetChamferRectRatio( aLayer ), GetChamferPositions( aLayer ), 0, GetMaxError(), ERROR_INSIDE ); add( new SHAPE_SIMPLE( outline.COutline( 0 ) ) ); } break; default: wxFAIL_MSG( wxT( "PAD::buildEffectiveShapes: Unsupported pad shape: PAD_SHAPE::" ) + wxString( std::string( magic_enum::enum_name( effectiveShape ) ) ) ); break; } if( GetShape( aLayer ) == PAD_SHAPE::CUSTOM ) { for( const std::shared_ptr& primitive : m_padStack.Primitives( aLayer ) ) { if( !primitive->IsProxyItem() ) { for( SHAPE* shape : primitive->MakeEffectiveShapes() ) { shape->Rotate( GetOrientation() ); shape->Move( shapePos ); add( shape ); } } } } return *m_effectiveShapes[aLayer]; } void PAD::BuildEffectivePolygon( ERROR_LOC aErrorLoc ) const { std::lock_guard RAII_lock( m_polyBuildingLock ); // Only calculate this once, not for both ERROR_INSIDE and ERROR_OUTSIDE bool doBoundingRadius = aErrorLoc == ERROR_OUTSIDE; // If we had to wait for the lock then we were probably waiting for someone else to // finish rebuilding the shapes. So check to see if they're clean now. if( !m_polyDirty[ aErrorLoc ] ) return; Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { // Polygon std::shared_ptr& effectivePolygon = m_effectivePolygons[ aLayer ][ aErrorLoc ]; effectivePolygon = std::make_shared(); TransformShapeToPolygon( *effectivePolygon, aLayer, 0, GetMaxError(), aErrorLoc ); } ); if( doBoundingRadius ) { m_effectiveBoundingRadius = 0; Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { std::shared_ptr& effectivePolygon = m_effectivePolygons[ aLayer ][ aErrorLoc ]; for( int cnt = 0; cnt < effectivePolygon->OutlineCount(); ++cnt ) { const SHAPE_LINE_CHAIN& poly = effectivePolygon->COutline( cnt ); for( int ii = 0; ii < poly.PointCount(); ++ii ) { int dist = KiROUND( ( poly.CPoint( ii ) - m_pos ).EuclideanNorm() ); m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, dist ); } } } ); m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, KiROUND( GetDrillSizeX() / 2.0 ) ); m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, KiROUND( GetDrillSizeY() / 2.0 ) ); } // All done m_polyDirty[ aErrorLoc ] = false; } const BOX2I PAD::GetBoundingBox() const { if( m_shapesDirty ) BuildEffectiveShapes(); return m_effectiveBoundingBox; } // Thermal spokes are built on the bounding box, so we must have a layer-specific version const BOX2I PAD::GetBoundingBox( PCB_LAYER_ID aLayer ) const { return buildEffectiveShape( aLayer ).BBox(); } void PAD::SetAttribute( PAD_ATTRIB aAttribute ) { if( m_attribute != aAttribute ) { m_attribute = aAttribute; LSET& layerMask = m_padStack.LayerSet(); switch( aAttribute ) { case PAD_ATTRIB::PTH: // Plump up to all copper layers layerMask |= LSET::AllCuMask(); break; case PAD_ATTRIB::SMD: case PAD_ATTRIB::CONN: { // Trim down to no more than one copper layer LSET copperLayers = layerMask & LSET::AllCuMask(); if( copperLayers.count() > 1 ) { layerMask &= ~LSET::AllCuMask(); if( copperLayers.test( B_Cu ) ) layerMask.set( B_Cu ); else layerMask.set( copperLayers.Seq().front() ); } // No hole m_padStack.Drill().size = VECTOR2I( 0, 0 ); break; } case PAD_ATTRIB::NPTH: // No number; no net m_number = wxEmptyString; SetNetCode( NETINFO_LIST::UNCONNECTED ); break; } } SetDirty(); } void PAD::SetFrontShape( PAD_SHAPE aShape ) { const bool wasRoundable = PAD_UTILS::PadHasMeaningfulRoundingRadius( *this, F_Cu ); m_padStack.SetShape( aShape, F_Cu ); const bool isRoundable = PAD_UTILS::PadHasMeaningfulRoundingRadius( *this, F_Cu ); // If we have become roundable, set a sensible rounding default using the IPC rules. if( !wasRoundable && isRoundable ) { const double ipcRadiusRatio = PAD_UTILS::GetDefaultIpcRoundingRatio( *this, F_Cu ); m_padStack.SetRoundRectRadiusRatio( ipcRadiusRatio, F_Cu ); } SetDirty(); } void PAD::SetProperty( PAD_PROP aProperty ) { m_property = aProperty; SetDirty(); } void PAD::SetOrientation( const EDA_ANGLE& aAngle ) { m_padStack.SetOrientation( aAngle ); SetDirty(); } void PAD::SetFPRelativeOrientation( const EDA_ANGLE& aAngle ) { if( FOOTPRINT* parentFP = GetParentFootprint() ) SetOrientation( aAngle + parentFP->GetOrientation() ); else SetOrientation( aAngle ); } EDA_ANGLE PAD::GetFPRelativeOrientation() const { if( FOOTPRINT* parentFP = GetParentFootprint() ) return GetOrientation() - parentFP->GetOrientation(); else return GetOrientation(); } void PAD::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { MIRROR( m_pos, aCentre, aFlipDirection ); m_padStack.ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { MIRROR( m_padStack.Offset( aLayer ), VECTOR2I{ 0, 0 }, aFlipDirection ); MIRROR( m_padStack.TrapezoidDeltaSize( aLayer ), VECTOR2I{ 0, 0 }, aFlipDirection ); } ); SetFPRelativeOrientation( -GetFPRelativeOrientation() ); auto mirrorBitFlags = []( int& aBitfield, int a, int b ) { bool temp = aBitfield & a; if( aBitfield & b ) aBitfield |= a; else aBitfield &= ~a; if( temp ) aBitfield |= b; else aBitfield &= ~b; }; Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT ) { mirrorBitFlags( m_padStack.ChamferPositions( aLayer ), RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT ); mirrorBitFlags( m_padStack.ChamferPositions( aLayer ), RECT_CHAMFER_BOTTOM_LEFT, RECT_CHAMFER_BOTTOM_RIGHT ); } else { mirrorBitFlags( m_padStack.ChamferPositions( aLayer ), RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_BOTTOM_LEFT ); mirrorBitFlags( m_padStack.ChamferPositions( aLayer ), RECT_CHAMFER_TOP_RIGHT, RECT_CHAMFER_BOTTOM_RIGHT ); } } ); // Flip padstack geometry int copperLayerCount = BoardCopperLayerCount(); m_padStack.FlipLayers( copperLayerCount ); // Flip pads layers after padstack geometry LSET flipped; for( PCB_LAYER_ID layer : m_padStack.LayerSet() ) flipped.set( GetBoard()->FlipLayer( layer ) ); SetLayerSet( flipped ); // Flip the basic shapes, in custom pads FlipPrimitives( aFlipDirection ); SetDirty(); } void PAD::FlipPrimitives( FLIP_DIRECTION aFlipDirection ) { Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { for( std::shared_ptr& primitive : m_padStack.Primitives( aLayer ) ) { // Ensure the primitive parent is up to date. Flip uses GetBoard() that // imply primitive parent is valid primitive->SetParent(this); primitive->Flip( VECTOR2I( 0, 0 ), aFlipDirection ); } } ); SetDirty(); } VECTOR2I PAD::ShapePos( PCB_LAYER_ID aLayer ) const { VECTOR2I loc_offset = m_padStack.Offset( aLayer ); if( loc_offset.x == 0 && loc_offset.y == 0 ) return m_pos; RotatePoint( loc_offset, GetOrientation() ); VECTOR2I shape_pos = m_pos + loc_offset; return shape_pos; } bool PAD::IsOnCopperLayer() const { if( GetAttribute() == PAD_ATTRIB::NPTH ) { // NPTH pads have no plated hole cylinder. If their annular ring size is 0 or // negative, then they have no annular ring either. bool hasAnnularRing = true; Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { switch( GetShape( aLayer ) ) { case PAD_SHAPE::CIRCLE: if( m_padStack.Offset( aLayer ) == VECTOR2I( 0, 0 ) && m_padStack.Size( aLayer ).x <= m_padStack.Drill().size.x ) { hasAnnularRing = false; } break; case PAD_SHAPE::OVAL: if( m_padStack.Offset( aLayer ) == VECTOR2I( 0, 0 ) && m_padStack.Size( aLayer ).x <= m_padStack.Drill().size.x && m_padStack.Size( aLayer ).y <= m_padStack.Drill().size.y ) { hasAnnularRing = false; } break; default: // We could subtract the hole polygon from the shape polygon for these, but it // would be expensive and we're probably well out of the common use cases.... break; } } ); if( !hasAnnularRing ) return false; } return ( GetLayerSet() & LSET::AllCuMask() ).any(); } std::optional PAD::GetLocalClearance( wxString* aSource ) const { if( m_padStack.Clearance().has_value() && aSource ) *aSource = _( "pad" ); return m_padStack.Clearance(); } std::optional PAD::GetClearanceOverrides( wxString* aSource ) const { if( m_padStack.Clearance().has_value() ) return GetLocalClearance( aSource ); if( FOOTPRINT* parentFootprint = GetParentFootprint() ) return parentFootprint->GetClearanceOverrides( aSource ); return std::optional(); } int PAD::GetOwnClearance( PCB_LAYER_ID aLayer, wxString* aSource ) const { DRC_CONSTRAINT c; if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings(); if( GetAttribute() == PAD_ATTRIB::NPTH ) c = bds.m_DRCEngine->EvalRules( HOLE_CLEARANCE_CONSTRAINT, this, nullptr, aLayer ); else c = bds.m_DRCEngine->EvalRules( CLEARANCE_CONSTRAINT, this, nullptr, aLayer ); } if( c.Value().HasMin() ) { if( aSource ) *aSource = c.GetName(); return c.Value().Min(); } return 0; } int PAD::GetSolderMaskExpansion( PCB_LAYER_ID aLayer ) const { // Pads defined only on mask layers (and perhaps on other tech layers) use the shape // defined by the pad settings only. ALL other pads, even those that don't actually have // any copper (such as NPTH pads with holes the same size as the pad) get mask expansion. if( ( m_padStack.LayerSet() & LSET::AllCuMask() ).none() ) return 0; if( IsFrontLayer( aLayer ) ) aLayer = F_Mask; else if( IsBackLayer( aLayer ) ) aLayer = B_Mask; else return 0; std::optional margin; if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { DRC_CONSTRAINT constraint; std::shared_ptr drcEngine = GetBoard()->GetDesignSettings().m_DRCEngine; constraint = drcEngine->EvalRules( SOLDER_MASK_EXPANSION_CONSTRAINT, this, nullptr, aLayer ); if( constraint.m_Value.HasOpt() ) margin = constraint.m_Value.Opt(); } else { margin = m_padStack.SolderMaskMargin( aLayer ); if( !margin.has_value() ) { if( FOOTPRINT* parentFootprint = GetParentFootprint() ) margin = parentFootprint->GetLocalSolderMaskMargin(); } } int marginValue = margin.value_or( 0 ); PCB_LAYER_ID cuLayer = ( aLayer == B_Mask ) ? B_Cu : F_Cu; // ensure mask have a size always >= 0 if( marginValue < 0 ) { int minsize = -std::min( m_padStack.Size( cuLayer ).x, m_padStack.Size( cuLayer ).y ) / 2; if( marginValue < minsize ) marginValue = minsize; } return marginValue; } VECTOR2I PAD::GetSolderPasteMargin( PCB_LAYER_ID aLayer ) const { // Pads defined only on mask layers (and perhaps on other tech layers) use the shape // defined by the pad settings only. ALL other pads, even those that don't actually have // any copper (such as NPTH pads with holes the same size as the pad) get paste expansion. if( ( m_padStack.LayerSet() & LSET::AllCuMask() ).none() ) return VECTOR2I( 0, 0 ); if( IsFrontLayer( aLayer ) ) aLayer = F_Paste; else if( IsBackLayer( aLayer ) ) aLayer = B_Paste; else return VECTOR2I( 0, 0 ); std::optional margin; std::optional mratio; if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { DRC_CONSTRAINT constraint; std::shared_ptr drcEngine = GetBoard()->GetDesignSettings().m_DRCEngine; constraint = drcEngine->EvalRules( SOLDER_PASTE_ABS_MARGIN_CONSTRAINT, this, nullptr, aLayer ); if( constraint.m_Value.HasOpt() ) margin = constraint.m_Value.Opt(); constraint = drcEngine->EvalRules( SOLDER_PASTE_REL_MARGIN_CONSTRAINT, this, nullptr, aLayer ); if( constraint.m_Value.HasOpt() ) mratio = constraint.m_Value.Opt() / 1000.0; } else { margin = m_padStack.SolderPasteMargin( aLayer ); mratio = m_padStack.SolderPasteMarginRatio( aLayer ); if( !margin.has_value() ) { if( FOOTPRINT* parentFootprint = GetParentFootprint() ) margin = parentFootprint->GetLocalSolderPasteMargin(); } if( !mratio.has_value() ) { if( FOOTPRINT* parentFootprint = GetParentFootprint() ) mratio = parentFootprint->GetLocalSolderPasteMarginRatio(); } } PCB_LAYER_ID cuLayer = ( aLayer == B_Paste ) ? B_Cu : F_Cu; VECTOR2I padSize = m_padStack.Size( cuLayer ); VECTOR2I pad_margin; pad_margin.x = margin.value_or( 0 ) + KiROUND( padSize.x * mratio.value_or( 0 ) ); pad_margin.y = margin.value_or( 0 ) + KiROUND( padSize.y * mratio.value_or( 0 ) ); // ensure paste have a size always >= 0 if( m_padStack.Shape( aLayer ) != PAD_SHAPE::CUSTOM ) { if( pad_margin.x < -padSize.x / 2 ) pad_margin.x = -padSize.x / 2; if( pad_margin.y < -padSize.y / 2 ) pad_margin.y = -padSize.y / 2; } return pad_margin; } ZONE_CONNECTION PAD::GetZoneConnectionOverrides( wxString* aSource ) const { ZONE_CONNECTION connection = m_padStack.ZoneConnection().value_or( ZONE_CONNECTION::INHERITED ); if( connection != ZONE_CONNECTION::INHERITED ) { if( aSource ) *aSource = _( "pad" ); } if( connection == ZONE_CONNECTION::INHERITED ) { if( FOOTPRINT* parentFootprint = GetParentFootprint() ) connection = parentFootprint->GetZoneConnectionOverrides( aSource ); } return connection; } int PAD::GetLocalSpokeWidthOverride( wxString* aSource ) const { if( m_padStack.ThermalSpokeWidth().has_value() && aSource ) *aSource = _( "pad" ); return m_padStack.ThermalSpokeWidth().value_or( 0 ); } int PAD::GetLocalThermalGapOverride( wxString* aSource ) const { if( m_padStack.ThermalGap().has_value() && aSource ) *aSource = _( "pad" ); return GetLocalThermalGapOverride().value_or( 0 ); } void PAD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { wxString msg; FOOTPRINT* parentFootprint = static_cast( m_parent ); if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { if( parentFootprint ) aList.emplace_back( _( "Footprint" ), parentFootprint->GetReference() ); } aList.emplace_back( _( "Pad" ), m_number ); if( !GetPinFunction().IsEmpty() ) aList.emplace_back( _( "Pin Name" ), GetPinFunction() ); if( !GetPinType().IsEmpty() ) aList.emplace_back( _( "Pin Type" ), GetPinType() ); if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) ); aList.emplace_back( _( "Resolved Netclass" ), UnescapeString( GetEffectiveNetClass()->GetHumanReadableName() ) ); if( IsLocked() ) aList.emplace_back( _( "Status" ), _( "Locked" ) ); } if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) aList.emplace_back( _( "Layer" ), layerMaskDescribe() ); if( aFrame->GetName() == FOOTPRINT_EDIT_FRAME_NAME ) { if( GetAttribute() == PAD_ATTRIB::SMD ) { // TOOD(JE) padstacks const std::shared_ptr& poly = GetEffectivePolygon( PADSTACK::ALL_LAYERS ); double area = poly->Area(); aList.emplace_back( _( "Area" ), aFrame->MessageTextFromValue( area, true, EDA_DATA_TYPE::AREA ) ); } } // Show the pad shape, attribute and property wxString props = ShowPadAttr(); if( GetProperty() != PAD_PROP::NONE ) props += ','; switch( GetProperty() ) { case PAD_PROP::NONE: break; case PAD_PROP::BGA: props += _( "BGA" ); break; case PAD_PROP::FIDUCIAL_GLBL: props += _( "Fiducial global" ); break; case PAD_PROP::FIDUCIAL_LOCAL: props += _( "Fiducial local" ); break; case PAD_PROP::TESTPOINT: props += _( "Test point" ); break; case PAD_PROP::HEATSINK: props += _( "Heat sink" ); break; case PAD_PROP::CASTELLATED: props += _( "Castellated" ); break; case PAD_PROP::MECHANICAL: props += _( "Mechanical" ); break; case PAD_PROP::PRESSFIT: props += _( "Press-fit" ); break; } // TODO(JE) How to show complex padstack info in the message panel aList.emplace_back( ShowPadShape( PADSTACK::ALL_LAYERS ), props ); PAD_SHAPE padShape = GetShape( PADSTACK::ALL_LAYERS ); VECTOR2I padSize = m_padStack.Size( PADSTACK::ALL_LAYERS ); if( ( padShape == PAD_SHAPE::CIRCLE || padShape == PAD_SHAPE::OVAL ) && padSize.x == padSize.y ) { aList.emplace_back( _( "Diameter" ), aFrame->MessageTextFromValue( padSize.x ) ); } else { aList.emplace_back( _( "Width" ), aFrame->MessageTextFromValue( padSize.x ) ); aList.emplace_back( _( "Height" ), aFrame->MessageTextFromValue( padSize.y ) ); } EDA_ANGLE fp_orient = parentFootprint ? parentFootprint->GetOrientation() : ANGLE_0; EDA_ANGLE pad_orient = GetOrientation() - fp_orient; pad_orient.Normalize180(); if( !fp_orient.IsZero() ) msg.Printf( wxT( "%g(+ %g)" ), pad_orient.AsDegrees(), fp_orient.AsDegrees() ); else msg.Printf( wxT( "%g" ), GetOrientation().AsDegrees() ); aList.emplace_back( _( "Rotation" ), msg ); if( GetPadToDieLength() ) { aList.emplace_back( _( "Length in Package" ), aFrame->MessageTextFromValue( GetPadToDieLength() ) ); } const VECTOR2I& drill = m_padStack.Drill().size; if( drill.x > 0 || drill.y > 0 ) { if( GetDrillShape() == PAD_DRILL_SHAPE::CIRCLE ) { aList.emplace_back( _( "Hole" ), wxString::Format( wxT( "%s" ), aFrame->MessageTextFromValue( drill.x ) ) ); } else { aList.emplace_back( _( "Hole X / Y" ), wxString::Format( wxT( "%s / %s" ), aFrame->MessageTextFromValue( drill.x ), aFrame->MessageTextFromValue( drill.y ) ) ); } } wxString source; int clearance = GetOwnClearance( UNDEFINED_LAYER, &source ); if( !source.IsEmpty() ) { aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ), aFrame->MessageTextFromValue( clearance ) ), wxString::Format( _( "(from %s)" ), source ) ); } #if 0 // useful for debug only aList.emplace_back( wxT( "UUID" ), m_Uuid.AsString() ); #endif } bool PAD::HitTest( const VECTOR2I& aPosition, int aAccuracy, PCB_LAYER_ID aLayer ) const { if( !IsOnLayer( aLayer ) ) return false; VECTOR2I delta = aPosition - GetPosition(); int boundingRadius = GetBoundingRadius() + aAccuracy; if( delta.SquaredEuclideanNorm() > SEG::Square( boundingRadius ) ) return false; bool contains = GetEffectivePolygon( aLayer, ERROR_INSIDE )->Contains( aPosition, -1, aAccuracy ); return contains; } bool PAD::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { VECTOR2I delta = aPosition - GetPosition(); int boundingRadius = GetBoundingRadius() + aAccuracy; if( delta.SquaredEuclideanNorm() > SEG::Square( boundingRadius ) ) return false; bool contains = false; Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID l ) { if( contains ) return; if( GetEffectivePolygon( l, ERROR_INSIDE )->Contains( aPosition, -1, aAccuracy ) ) contains = true; } ); contains |= GetEffectiveHoleShape()->Collide( aPosition, aAccuracy ); return contains; } bool PAD::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { BOX2I arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); BOX2I bbox = GetBoundingBox(); if( aContained ) { return arect.Contains( bbox ); } else { // Fast test: if aRect is outside the polygon bounding box, // rectangles cannot intersect if( !arect.Intersects( bbox ) ) return false; bool hit = false; Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { if( hit ) return; const std::shared_ptr& poly = GetEffectivePolygon( aLayer, ERROR_INSIDE ); int count = poly->TotalVertices(); for( int ii = 0; ii < count; ii++ ) { VECTOR2I vertex = poly->CVertex( ii ); VECTOR2I vertexNext = poly->CVertex( ( ii + 1 ) % count ); // Test if the point is within aRect if( arect.Contains( vertex ) ) { hit = true; break; } // Test if this edge intersects aRect if( arect.Intersects( vertex, vertexNext ) ) { hit = true; break; } } } ); if( !hit ) { SHAPE_RECT rect( arect ); hit |= GetEffectiveHoleShape()->Collide( &rect ); } return hit; } } bool PAD::HitTest( const SHAPE_LINE_CHAIN& aPoly, bool aContained ) const { SHAPE_COMPOUND effectiveShape; // Add padstack shapes Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { effectiveShape.AddShape( GetEffectiveShape( aLayer ) ); } ); // Add hole shape effectiveShape.AddShape( GetEffectiveHoleShape() ); return KIGEOM::ShapeHitTest( aPoly, effectiveShape, aContained ); } int PAD::Compare( const PAD* aPadRef, const PAD* aPadCmp ) { int diff; if( ( diff = static_cast( aPadRef->m_attribute ) - static_cast( aPadCmp->m_attribute ) ) != 0 ) return diff; return PADSTACK::Compare( &aPadRef->Padstack(), &aPadCmp->Padstack() ); } void PAD::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) { RotatePoint( m_pos, aRotCentre, aAngle ); m_padStack.SetOrientation( m_padStack.GetOrientation() + aAngle ); SetDirty(); } wxString PAD::ShowPadShape( PCB_LAYER_ID aLayer ) const { switch( GetShape( aLayer ) ) { case PAD_SHAPE::CIRCLE: return _( "Circle" ); case PAD_SHAPE::OVAL: return _( "Oval" ); case PAD_SHAPE::RECTANGLE: return _( "Rect" ); case PAD_SHAPE::TRAPEZOID: return _( "Trap" ); case PAD_SHAPE::ROUNDRECT: return _( "Roundrect" ); case PAD_SHAPE::CHAMFERED_RECT: return _( "Chamferedrect" ); case PAD_SHAPE::CUSTOM: return _( "CustomShape" ); default: return wxT( "???" ); } } wxString PAD::ShowPadAttr() const { switch( GetAttribute() ) { case PAD_ATTRIB::PTH: return _( "PTH" ); case PAD_ATTRIB::SMD: return _( "SMD" ); case PAD_ATTRIB::CONN: return _( "Conn" ); case PAD_ATTRIB::NPTH: return _( "NPTH" ); default: return wxT( "???" ); } } wxString PAD::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const { FOOTPRINT* parentFP = GetParentFootprint(); // Don't report parent footprint info from footprint editor, viewer, etc. if( GetBoard() && GetBoard()->GetBoardUse() == BOARD_USE::FPHOLDER ) parentFP = nullptr; if( GetAttribute() == PAD_ATTRIB::NPTH ) { if( parentFP ) return wxString::Format( _( "NPTH pad of %s" ), parentFP->GetReference() ); else return _( "NPTH pad" ); } else if( GetNumber().IsEmpty() ) { if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) { if( parentFP ) { return wxString::Format( _( "Pad %s of %s on %s" ), GetNetnameMsg(), parentFP->GetReference(), layerMaskDescribe() ); } else { return wxString::Format( _( "Pad on %s" ), layerMaskDescribe() ); } } else { if( parentFP ) { return wxString::Format( _( "PTH pad %s of %s" ), GetNetnameMsg(), parentFP->GetReference() ); } else { return _( "PTH pad" ); } } } else { if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) { if( parentFP ) { return wxString::Format( _( "Pad %s %s of %s on %s" ), GetNumber(), GetNetnameMsg(), parentFP->GetReference(), layerMaskDescribe() ); } else { return wxString::Format( _( "Pad %s on %s" ), GetNumber(), layerMaskDescribe() ); } } else { if( parentFP ) { return wxString::Format( _( "PTH pad %s %s of %s" ), GetNumber(), GetNetnameMsg(), parentFP->GetReference() ); } else { return wxString::Format( _( "PTH pad %s" ), GetNumber() ); } } } } BITMAPS PAD::GetMenuImage() const { return BITMAPS::pad; } EDA_ITEM* PAD::Clone() const { PAD* cloned = new PAD( *this ); // Ensure the cloned primitives of the pad stack have the right parent cloned->Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { for( std::shared_ptr& primitive : cloned->m_padStack.Primitives( aLayer ) ) primitive->SetParent( cloned ); } ); return cloned; } std::vector PAD::ViewGetLayers() const { std::vector layers; layers.reserve( 64 ); // These 2 types of pads contain a hole if( m_attribute == PAD_ATTRIB::PTH ) { layers.push_back( LAYER_PAD_PLATEDHOLES ); layers.push_back( LAYER_PAD_HOLEWALLS ); } if( m_attribute == PAD_ATTRIB::NPTH ) layers.push_back( LAYER_NON_PLATEDHOLES ); if( IsLocked() || ( GetParentFootprint() && GetParentFootprint()->IsLocked() ) ) layers.push_back( LAYER_LOCKED_ITEM_SHADOW ); LSET cuLayers = ( m_padStack.LayerSet() & LSET::AllCuMask() ); // Don't spend cycles rendering layers that aren't visible if( const BOARD* board = GetBoard() ) cuLayers &= board->GetEnabledLayers(); if( cuLayers.count() > 1 ) { // Multi layer pad for( PCB_LAYER_ID layer : cuLayers.Seq() ) { layers.push_back( LAYER_PAD_COPPER_START + layer ); layers.push_back( LAYER_CLEARANCE_START + layer ); } layers.push_back( LAYER_PAD_NETNAMES ); } else if( IsOnLayer( F_Cu ) ) { layers.push_back( LAYER_PAD_COPPER_START ); layers.push_back( LAYER_CLEARANCE_START ); // Is this a PTH pad that has only front copper? If so, we need to also display the // net name on the PTH netname layer so that it isn't blocked by the drill hole. if( m_attribute == PAD_ATTRIB::PTH ) layers.push_back( LAYER_PAD_NETNAMES ); else layers.push_back( LAYER_PAD_FR_NETNAMES ); } else if( IsOnLayer( B_Cu ) ) { layers.push_back( LAYER_PAD_COPPER_START + B_Cu ); layers.push_back( LAYER_CLEARANCE_START + B_Cu ); // Is this a PTH pad that has only back copper? If so, we need to also display the // net name on the PTH netname layer so that it isn't blocked by the drill hole. if( m_attribute == PAD_ATTRIB::PTH ) layers.push_back( LAYER_PAD_NETNAMES ); else layers.push_back( LAYER_PAD_BK_NETNAMES ); } // Check non-copper layers. This list should include all the layers that the // footprint editor allows a pad to be placed on. static const PCB_LAYER_ID layers_mech[] = { F_Mask, B_Mask, F_Paste, B_Paste, F_Adhes, B_Adhes, F_SilkS, B_SilkS, Dwgs_User, Eco1_User, Eco2_User }; for( PCB_LAYER_ID each_layer : layers_mech ) { if( IsOnLayer( each_layer ) ) layers.push_back( each_layer ); } return layers; } double PAD::ViewGetLOD( int aLayer, const KIGFX::VIEW* aView ) const { PCB_PAINTER& painter = static_cast( *aView->GetPainter() ); PCB_RENDER_SETTINGS& renderSettings = *painter.GetSettings(); const BOARD* board = GetBoard(); // Meta control for hiding all pads if( !aView->IsLayerVisible( LAYER_PADS ) ) return LOD_HIDE; // Handle Render tab switches //const PCB_LAYER_ID& pcbLayer = static_cast( aLayer ); if( !IsFlipped() && !aView->IsLayerVisible( LAYER_FOOTPRINTS_FR ) ) return LOD_HIDE; if( IsFlipped() && !aView->IsLayerVisible( LAYER_FOOTPRINTS_BK ) ) return LOD_HIDE; if( IsHoleLayer( aLayer ) ) { LSET visiblePhysical = board->GetVisibleLayers(); visiblePhysical &= board->GetEnabledLayers(); visiblePhysical &= LSET::PhysicalLayersMask(); if( !visiblePhysical.any() ) return LOD_HIDE; } else if( IsNetnameLayer( aLayer ) ) { if( renderSettings.GetHighContrast() ) { // Hide netnames unless pad is flashed to a high-contrast layer if( !FlashLayer( renderSettings.GetPrimaryHighContrastLayer() ) ) return LOD_HIDE; } else { LSET visible = board->GetVisibleLayers(); visible &= board->GetEnabledLayers(); // Hide netnames unless pad is flashed to a visible layer if( !FlashLayer( visible ) ) return LOD_HIDE; } // Netnames will be shown only if zoom is appropriate const int minSize = std::min( GetBoundingBox().GetWidth(), GetBoundingBox().GetHeight() ); return lodScaleForThreshold( aView, minSize, pcbIUScale.mmToIU( 0.5 ) ); } VECTOR2L padSize = GetBoundingBox().GetSize(); int64_t minSide = std::min( padSize.x, padSize.y ); if( minSide > 0 ) return std::min( lodScaleForThreshold( aView, minSide, pcbIUScale.mmToIU( 0.2 ) ), 3.5 ); return LOD_SHOW; } const BOX2I PAD::ViewBBox() const { // Bounding box includes soldermask too. Remember mask and/or paste margins can be < 0 int solderMaskMargin = 0; VECTOR2I solderPasteMargin; Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { solderMaskMargin = std::max( solderMaskMargin, std::max( GetSolderMaskExpansion( aLayer ), 0 ) ); VECTOR2I layerMargin = GetSolderPasteMargin( aLayer ); solderPasteMargin.x = std::max( solderPasteMargin.x, layerMargin.x ); solderPasteMargin.y = std::max( solderPasteMargin.y, layerMargin.y ); } ); BOX2I bbox = GetBoundingBox(); int clearance = 0; // If we're drawing clearance lines then get the biggest possible clearance if( PCBNEW_SETTINGS* cfg = dynamic_cast( Kiface().KifaceSettings() ) ) { if( cfg && cfg->m_Display.m_PadClearance && GetBoard() ) clearance = GetBoard()->GetMaxClearanceValue(); } // Look for the biggest possible bounding box int xMargin = std::max( solderMaskMargin, solderPasteMargin.x ) + clearance; int yMargin = std::max( solderMaskMargin, solderPasteMargin.y ) + clearance; return BOX2I( VECTOR2I( bbox.GetOrigin() ) - VECTOR2I( xMargin, yMargin ), VECTOR2I( bbox.GetSize() ) + VECTOR2I( 2 * xMargin, 2 * yMargin ) ); } void PAD::ImportSettingsFrom( const PAD& aMasterPad ) { SetPadstack( aMasterPad.Padstack() ); // Layer Set should be updated before calling SetAttribute() SetLayerSet( aMasterPad.GetLayerSet() ); SetAttribute( aMasterPad.GetAttribute() ); // Unfortunately, SetAttribute() can change m_layerMask. // Be sure we keep the original mask by calling SetLayerSet() after SetAttribute() SetLayerSet( aMasterPad.GetLayerSet() ); SetProperty( aMasterPad.GetProperty() ); // Must be after setting attribute and layerSet if( !CanHaveNumber() ) SetNumber( wxEmptyString ); // I am not sure the m_LengthPadToDie should be imported, because this is a parameter // really specific to a given pad (JPC). #if 0 SetPadToDieLength( aMasterPad.GetPadToDieLength() ); SetPadToDieDelay( aMasterPad.GetPadToDieDelay() ); #endif // The pad orientation, for historical reasons is the pad rotation + parent rotation. EDA_ANGLE pad_rot = aMasterPad.GetOrientation(); if( aMasterPad.GetParentFootprint() ) pad_rot -= aMasterPad.GetParentFootprint()->GetOrientation(); if( GetParentFootprint() ) pad_rot += GetParentFootprint()->GetOrientation(); SetOrientation( pad_rot ); Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { // Ensure that circles are circles if( aMasterPad.GetShape( aLayer ) == PAD_SHAPE::CIRCLE ) SetSize( aLayer, VECTOR2I( GetSize( aLayer ).x, GetSize( aLayer ).x ) ); } ); switch( aMasterPad.GetAttribute() ) { case PAD_ATTRIB::SMD: case PAD_ATTRIB::CONN: // These pads do not have a hole (they are expected to be on one external copper layer) SetDrillSize( VECTOR2I( 0, 0 ) ); break; default: ; } // copy also local settings: SetLocalClearance( aMasterPad.GetLocalClearance() ); SetLocalSolderMaskMargin( aMasterPad.GetLocalSolderMaskMargin() ); SetLocalSolderPasteMargin( aMasterPad.GetLocalSolderPasteMargin() ); SetLocalSolderPasteMarginRatio( aMasterPad.GetLocalSolderPasteMarginRatio() ); SetLocalZoneConnection( aMasterPad.GetLocalZoneConnection() ); SetLocalThermalSpokeWidthOverride( aMasterPad.GetLocalThermalSpokeWidthOverride() ); SetThermalSpokeAngle( aMasterPad.GetThermalSpokeAngle() ); SetLocalThermalGapOverride( aMasterPad.GetLocalThermalGapOverride() ); SetCustomShapeInZoneOpt( aMasterPad.GetCustomShapeInZoneOpt() ); m_teardropParams = aMasterPad.m_teardropParams; SetDirty(); } void PAD::swapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_PAD_T ); std::swap( *this, *static_cast( aImage ) ); } bool PAD::TransformHoleToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError, ERROR_LOC aErrorLoc ) const { VECTOR2I drillsize = GetDrillSize(); if( !drillsize.x || !drillsize.y ) return false; std::shared_ptr slot = GetEffectiveHoleShape(); TransformOvalToPolygon( aBuffer, slot->GetSeg().A, slot->GetSeg().B, slot->GetWidth() + aClearance * 2, aError, aErrorLoc ); return true; } void PAD::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aMaxError, ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const { wxASSERT_MSG( !ignoreLineWidth, wxT( "IgnoreLineWidth has no meaning for pads." ) ); wxASSERT_MSG( aLayer != UNDEFINED_LAYER, wxT( "UNDEFINED_LAYER is no longer allowed for PAD::TransformShapeToPolygon" ) ); // minimal segment count to approximate a circle to create the polygonal pad shape // This minimal value is mainly for very small pads, like SM0402. // Most of time pads are using the segment count given by aError value. const int pad_min_seg_per_circle_count = 16; int dx = m_padStack.Size( aLayer ).x / 2; int dy = m_padStack.Size( aLayer ).y / 2; VECTOR2I padShapePos = ShapePos( aLayer ); // Note: for pad having a shape offset, the pad // position is NOT the shape position switch( PAD_SHAPE shape = GetShape( aLayer ) ) { case PAD_SHAPE::CIRCLE: case PAD_SHAPE::OVAL: // Note: dx == dy is not guaranteed for circle pads in legacy boards if( dx == dy || ( shape == PAD_SHAPE::CIRCLE ) ) { TransformCircleToPolygon( aBuffer, padShapePos, dx + aClearance, aMaxError, aErrorLoc, pad_min_seg_per_circle_count ); } else { int half_width = std::min( dx, dy ); VECTOR2I delta( dx - half_width, dy - half_width ); RotatePoint( delta, GetOrientation() ); TransformOvalToPolygon( aBuffer, padShapePos - delta, padShapePos + delta, ( half_width + aClearance ) * 2, aMaxError, aErrorLoc, pad_min_seg_per_circle_count ); } break; case PAD_SHAPE::TRAPEZOID: case PAD_SHAPE::RECTANGLE: { const VECTOR2I& trapDelta = m_padStack.TrapezoidDeltaSize( aLayer ); int ddx = shape == PAD_SHAPE::TRAPEZOID ? trapDelta.x / 2 : 0; int ddy = shape == PAD_SHAPE::TRAPEZOID ? trapDelta.y / 2 : 0; SHAPE_POLY_SET outline; TransformTrapezoidToPolygon( outline, padShapePos, m_padStack.Size( aLayer ), GetOrientation(), ddx, ddy, aClearance, aMaxError, aErrorLoc ); aBuffer.Append( outline ); break; } case PAD_SHAPE::CHAMFERED_RECT: case PAD_SHAPE::ROUNDRECT: { bool doChamfer = shape == PAD_SHAPE::CHAMFERED_RECT; SHAPE_POLY_SET outline; TransformRoundChamferedRectToPolygon( outline, padShapePos, m_padStack.Size( aLayer ), GetOrientation(), GetRoundRectCornerRadius( aLayer ), doChamfer ? GetChamferRectRatio( aLayer ) : 0, doChamfer ? GetChamferPositions( aLayer ) : 0, aClearance, aMaxError, aErrorLoc ); aBuffer.Append( outline ); break; } case PAD_SHAPE::CUSTOM: { SHAPE_POLY_SET outline; MergePrimitivesAsPolygon( aLayer, &outline, aErrorLoc ); outline.Rotate( GetOrientation() ); outline.Move( VECTOR2I( padShapePos ) ); if( aClearance > 0 || aErrorLoc == ERROR_OUTSIDE ) { if( aErrorLoc == ERROR_OUTSIDE ) aClearance += aMaxError; outline.Inflate( aClearance, CORNER_STRATEGY::ROUND_ALL_CORNERS, aMaxError ); outline.Fracture(); } else if( aClearance < 0 ) { // Negative clearances are primarily for drawing solder paste layer, so we don't // worry ourselves overly about which side the error is on. // aClearance is negative so this is actually a deflate outline.Inflate( aClearance, CORNER_STRATEGY::ALLOW_ACUTE_CORNERS, aMaxError ); outline.Fracture(); } aBuffer.Append( outline ); break; } default: wxFAIL_MSG( wxT( "PAD::TransformShapeToPolygon no implementation for " ) + wxString( std::string( magic_enum::enum_name( shape ) ) ) ); break; } } std::vector PAD::Recombine( bool aIsDryRun, int maxError ) { FOOTPRINT* footprint = GetParentFootprint(); for( BOARD_ITEM* item : footprint->GraphicalItems() ) item->ClearFlags( SKIP_STRUCT ); auto findNext = [&]( PCB_LAYER_ID aLayer ) -> PCB_SHAPE* { SHAPE_POLY_SET padPoly; TransformShapeToPolygon( padPoly, aLayer, 0, maxError, ERROR_INSIDE ); for( BOARD_ITEM* item : footprint->GraphicalItems() ) { PCB_SHAPE* shape = dynamic_cast( item ); if( !shape || ( shape->GetFlags() & SKIP_STRUCT ) ) continue; if( shape->GetLayer() != aLayer ) continue; if( shape->IsProxyItem() ) // Pad number (and net name) box return shape; SHAPE_POLY_SET drawPoly; shape->TransformShapeToPolygon( drawPoly, aLayer, 0, maxError, ERROR_INSIDE ); drawPoly.BooleanIntersection( padPoly ); if( !drawPoly.IsEmpty() ) return shape; } return nullptr; }; auto findMatching = [&]( PCB_SHAPE* aShape ) -> std::vector { std::vector matching; for( BOARD_ITEM* item : footprint->GraphicalItems() ) { PCB_SHAPE* other = dynamic_cast( item ); if( !other || ( other->GetFlags() & SKIP_STRUCT ) ) continue; if( GetLayerSet().test( other->GetLayer() ) && aShape->Compare( other ) == 0 ) matching.push_back( other ); } return matching; }; PCB_LAYER_ID layer; std::vector mergedShapes; if( IsOnLayer( F_Cu ) ) layer = F_Cu; else if( IsOnLayer( B_Cu ) ) layer = B_Cu; else layer = GetLayerSet().UIOrder().front(); PAD_SHAPE origShape = GetShape( layer ); // If there are intersecting items to combine, we need to first make sure the pad is a // custom-shape pad. if( !aIsDryRun && findNext( layer ) && origShape != PAD_SHAPE::CUSTOM ) { if( origShape == PAD_SHAPE::CIRCLE || origShape == PAD_SHAPE::RECTANGLE ) { // Use the existing pad as an anchor SetAnchorPadShape( layer, origShape ); SetShape( layer, PAD_SHAPE::CUSTOM ); } else { // Create a new circular anchor and convert existing pad to a polygon primitive SHAPE_POLY_SET existingOutline; TransformShapeToPolygon( existingOutline, layer, 0, maxError, ERROR_INSIDE ); int minExtent = std::min( GetSize( layer ).x, GetSize( layer ).y ); SetAnchorPadShape( layer, PAD_SHAPE::CIRCLE ); SetSize( layer, VECTOR2I( minExtent, minExtent ) ); SetShape( layer, PAD_SHAPE::CUSTOM ); PCB_SHAPE* shape = new PCB_SHAPE( nullptr, SHAPE_T::POLY ); shape->SetFilled( true ); shape->SetStroke( STROKE_PARAMS( 0, LINE_STYLE::SOLID ) ); shape->SetPolyShape( existingOutline ); shape->Move( - ShapePos( layer ) ); shape->Rotate( VECTOR2I( 0, 0 ), - GetOrientation() ); AddPrimitive( layer, shape ); } } while( PCB_SHAPE* fpShape = findNext( layer ) ) { fpShape->SetFlags( SKIP_STRUCT ); mergedShapes.push_back( fpShape ); if( !aIsDryRun ) { // If the editor was inside a group when the pad was exploded, the added exploded shapes // will be part of the group. Remove them here before duplicating; we don't want the // primitives to wind up in a group. if( EDA_GROUP* group = fpShape->GetParentGroup(); group ) group->RemoveItem( fpShape ); PCB_SHAPE* primitive = static_cast( fpShape->Duplicate( IGNORE_PARENT_GROUP ) ); primitive->SetParent( nullptr ); // Convert any hatched fills to solid if( primitive->IsAnyFill() ) primitive->SetFillMode( FILL_T::FILLED_SHAPE ); primitive->Move( - ShapePos( layer ) ); primitive->Rotate( VECTOR2I( 0, 0 ), - GetOrientation() ); AddPrimitive( layer, primitive ); } // See if there are other shapes that match and mark them for delete. (KiCad won't // produce these, but old footprints from other vendors have them.) for( PCB_SHAPE* other : findMatching( fpShape ) ) { other->SetFlags( SKIP_STRUCT ); mergedShapes.push_back( other ); } } for( BOARD_ITEM* item : footprint->GraphicalItems() ) item->ClearFlags( SKIP_STRUCT ); if( !aIsDryRun ) ClearFlags( ENTERED ); return mergedShapes; } void PAD::CheckPad( UNITS_PROVIDER* aUnitsProvider, bool aForPadProperties, const std::function& aErrorHandler ) const { Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { doCheckPad( aLayer, aUnitsProvider, aForPadProperties, aErrorHandler ); } ); LSET padlayers_mask = GetLayerSet(); VECTOR2I drill_size = GetDrillSize(); if( !padlayers_mask[F_Cu] && !padlayers_mask[B_Cu] ) { if( ( drill_size.x || drill_size.y ) && GetAttribute() != PAD_ATTRIB::NPTH ) { aErrorHandler( DRCE_PADSTACK, _( "(plated through holes normally have a copper pad on " "at least one outer layer)" ) ); } } if( ( GetProperty() == PAD_PROP::FIDUCIAL_GLBL || GetProperty() == PAD_PROP::FIDUCIAL_LOCAL ) && GetAttribute() == PAD_ATTRIB::NPTH ) { aErrorHandler( DRCE_PADSTACK, _( "('fiducial' property makes no sense on NPTH pads)" ) ); } if( GetProperty() == PAD_PROP::TESTPOINT && GetAttribute() == PAD_ATTRIB::NPTH ) aErrorHandler( DRCE_PADSTACK, _( "('testpoint' property makes no sense on NPTH pads)" ) ); if( GetProperty() == PAD_PROP::HEATSINK && GetAttribute() == PAD_ATTRIB::NPTH ) aErrorHandler( DRCE_PADSTACK, _( "('heatsink' property makes no sense on NPTH pads)" ) ); if( GetProperty() == PAD_PROP::CASTELLATED && GetAttribute() != PAD_ATTRIB::PTH ) aErrorHandler( DRCE_PADSTACK, _( "('castellated' property is for PTH pads)" ) ); if( GetProperty() == PAD_PROP::BGA && GetAttribute() != PAD_ATTRIB::SMD ) aErrorHandler( DRCE_PADSTACK, _( "('BGA' property is for SMD pads)" ) ); if( GetProperty() == PAD_PROP::MECHANICAL && GetAttribute() != PAD_ATTRIB::PTH ) aErrorHandler( DRCE_PADSTACK, _( "('mechanical' property is for PTH pads)" ) ); if( GetProperty() == PAD_PROP::PRESSFIT && ( GetAttribute() != PAD_ATTRIB::PTH || !HasDrilledHole() ) ) aErrorHandler( DRCE_PADSTACK, _( "('press-fit' property is for PTH pads with round holes)" ) ); switch( GetAttribute() ) { case PAD_ATTRIB::NPTH: // Not plated, but through hole, a hole is expected case PAD_ATTRIB::PTH: // Pad through hole, a hole is also expected if( drill_size.x <= 0 || ( drill_size.y <= 0 && GetDrillShape() == PAD_DRILL_SHAPE::OBLONG ) ) { aErrorHandler( DRCE_PAD_TH_WITH_NO_HOLE, wxEmptyString ); } break; case PAD_ATTRIB::CONN: // Connector pads are smd pads, just they do not have solder paste. if( padlayers_mask[B_Paste] || padlayers_mask[F_Paste] ) { aErrorHandler( DRCE_PADSTACK, _( "(connector pads normally have no solder paste; use a " "SMD pad instead)" ) ); } KI_FALLTHROUGH; case PAD_ATTRIB::SMD: // SMD and Connector pads (One external copper layer only) { if( drill_size.x > 0 || drill_size.y > 0 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(SMD pad has a hole)" ) ); LSET innerlayers_mask = padlayers_mask & LSET::InternalCuMask(); if( IsOnLayer( F_Cu ) && IsOnLayer( B_Cu ) ) { aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has copper on both sides of the board)" ) ); } else if( IsOnLayer( F_Cu ) ) { if( IsOnLayer( B_Mask ) ) { aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has copper and mask layers on different " "sides of the board)" ) ); } else if( IsOnLayer( B_Paste ) ) { aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has copper and paste layers on different " "sides of the board)" ) ); } } else if( IsOnLayer( B_Cu ) ) { if( IsOnLayer( F_Mask ) ) { aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has copper and mask layers on different " "sides of the board)" ) ); } else if( IsOnLayer( F_Paste ) ) { aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has copper and paste layers on different " "sides of the board)" ) ); } } else if( innerlayers_mask.count() != 0 ) { aErrorHandler( DRCE_PADSTACK, _( "(SMD pad has no outer layers)" ) ); } break; } } } void PAD::doCheckPad( PCB_LAYER_ID aLayer, UNITS_PROVIDER* aUnitsProvider, bool aForPadProperties, const std::function& aErrorHandler ) const { wxString msg; VECTOR2I pad_size = GetSize( aLayer ); if( GetShape( aLayer ) == PAD_SHAPE::CUSTOM ) pad_size = GetBoundingBox().GetSize(); else if( pad_size.x <= 0 || ( pad_size.y <= 0 && GetShape( aLayer ) != PAD_SHAPE::CIRCLE ) ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(Pad must have a positive size)" ) ); // Test hole against pad shape if( IsOnCopperLayer() && GetDrillSize().x > 0 ) { // Ensure the drill size can be handled in next calculations. // Use min size = 4 IU to be able to build a polygon from a hole shape const int min_drill_size = 4; if( GetDrillSizeX() <= min_drill_size || GetDrillSizeY() <= min_drill_size ) { msg.Printf( _( "(PTH pad hole size must be larger than %s)" ), aUnitsProvider->StringFromValue( min_drill_size, true ) ); aErrorHandler( DRCE_PADSTACK_INVALID, msg ); } SHAPE_POLY_SET padOutline; TransformShapeToPolygon( padOutline, aLayer, 0, GetMaxError(), ERROR_INSIDE ); if( GetAttribute() == PAD_ATTRIB::PTH ) { // Test if there is copper area outside hole std::shared_ptr hole = GetEffectiveHoleShape(); SHAPE_POLY_SET holeOutline; TransformOvalToPolygon( holeOutline, hole->GetSeg().A, hole->GetSeg().B, hole->GetWidth(), GetMaxError(), ERROR_OUTSIDE ); SHAPE_POLY_SET copper = padOutline; copper.BooleanSubtract( holeOutline ); if( copper.IsEmpty() ) { aErrorHandler( DRCE_PADSTACK, _( "(PTH pad hole leaves no copper)" ) ); } else if( aForPadProperties ) { // Test if the pad hole is fully inside the copper area. Note that we only run // this check for pad properties because we run the more complete annular ring // checker on the board (which handles multiple pads with the same name). holeOutline.BooleanSubtract( padOutline ); if( !holeOutline.IsEmpty() ) aErrorHandler( DRCE_PADSTACK, _( "(PTH pad hole not fully inside copper)" ) ); } } else { // Test only if the pad hole's centre is inside the copper area if( !padOutline.Collide( GetPosition() ) ) aErrorHandler( DRCE_PADSTACK, _( "(pad hole not inside pad shape)" ) ); } } if( GetLocalClearance().value_or( 0 ) < 0 ) aErrorHandler( DRCE_PADSTACK, _( "(negative local clearance values have no effect)" ) ); // Some pads need a negative solder mask clearance (mainly for BGA with small pads) // However the negative solder mask clearance must not create negative mask size // Therefore test for minimal acceptable negative value std::optional solderMaskMargin = GetLocalSolderMaskMargin(); if( solderMaskMargin.has_value() && solderMaskMargin.value() < 0 ) { int absMargin = abs( solderMaskMargin.value() ); if( GetShape( aLayer ) == PAD_SHAPE::CUSTOM ) { for( const std::shared_ptr& shape : GetPrimitives( aLayer ) ) { BOX2I shapeBBox = shape->GetBoundingBox(); if( absMargin > shapeBBox.GetWidth() || absMargin > shapeBBox.GetHeight() ) { aErrorHandler( DRCE_PADSTACK, _( "(negative solder mask clearance is larger " "than some shape primitives; results may be " "surprising)" ) ); break; } } } else if( absMargin > pad_size.x || absMargin > pad_size.y ) { aErrorHandler( DRCE_PADSTACK, _( "(negative solder mask clearance is larger than pad; " "no solder mask will be generated)" ) ); } } // Some pads need a positive solder paste clearance (mainly for BGA with small pads) // However, a positive value can create issues if the resulting shape is too big. // (like a solder paste creating a solder paste area on a neighbor pad or on the solder mask) // So we could ask for user to confirm the choice // For now we just check for disappearing paste wxSize paste_size; int paste_margin = GetLocalSolderPasteMargin().value_or( 0 ); double paste_ratio = GetLocalSolderPasteMarginRatio().value_or( 0 ); paste_size.x = pad_size.x + paste_margin + KiROUND( pad_size.x * paste_ratio ); paste_size.y = pad_size.y + paste_margin + KiROUND( pad_size.y * paste_ratio ); if( paste_size.x <= 0 || paste_size.y <= 0 ) { aErrorHandler( DRCE_PADSTACK, _( "(negative solder paste margin is larger than pad; " "no solder paste mask will be generated)" ) ); } if( GetShape( aLayer ) == PAD_SHAPE::ROUNDRECT ) { if( GetRoundRectRadiusRatio( aLayer ) < 0.0 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(negative corner radius is not allowed)" ) ); else if( GetRoundRectRadiusRatio( aLayer ) > 50.0 ) aErrorHandler( DRCE_PADSTACK, _( "(corner size will make pad circular)" ) ); } else if( GetShape( aLayer ) == PAD_SHAPE::CHAMFERED_RECT ) { if( GetChamferRectRatio( aLayer ) < 0.0 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(negative corner chamfer is not allowed)" ) ); else if( GetChamferRectRatio( aLayer ) > 50.0 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(corner chamfer is too large)" ) ); } else if( GetShape( aLayer ) == PAD_SHAPE::TRAPEZOID ) { if( ( GetDelta( aLayer ).x < 0 && GetDelta( aLayer ).x < -GetSize( aLayer ).y ) || ( GetDelta( aLayer ).x > 0 && GetDelta( aLayer ).x > GetSize( aLayer ).y ) || ( GetDelta( aLayer ).y < 0 && GetDelta( aLayer ).y < -GetSize( aLayer ).x ) || ( GetDelta( aLayer ).y > 0 && GetDelta( aLayer ).y > GetSize( aLayer ).x ) ) { aErrorHandler( DRCE_PADSTACK_INVALID, _( "(trapezoid delta is too large)" ) ); } } if( GetShape( aLayer ) == PAD_SHAPE::CUSTOM ) { SHAPE_POLY_SET mergedPolygon; MergePrimitivesAsPolygon( aLayer, &mergedPolygon ); if( mergedPolygon.OutlineCount() > 1 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(custom pad shape must resolve to a single polygon)" ) ); } } bool PAD::operator==( const BOARD_ITEM& aBoardItem ) const { if( Type() != aBoardItem.Type() ) return false; if( m_parent && aBoardItem.GetParent() && m_parent->m_Uuid != aBoardItem.GetParent()->m_Uuid ) return false; const PAD& other = static_cast( aBoardItem ); return *this == other; } bool PAD::operator==( const PAD& aOther ) const { if( Padstack() != aOther.Padstack() ) return false; if( GetPosition() != aOther.GetPosition() ) return false; if( GetAttribute() != aOther.GetAttribute() ) return false; return true; } double PAD::Similarity( const BOARD_ITEM& aOther ) const { if( aOther.Type() != Type() ) return 0.0; if( m_parent->m_Uuid != aOther.GetParent()->m_Uuid ) return 0.0; const PAD& other = static_cast( aOther ); double similarity = 1.0; if( GetPosition() != other.GetPosition() ) similarity *= 0.9; if( GetAttribute() != other.GetAttribute() ) similarity *= 0.9; similarity *= Padstack().Similarity( other.Padstack() ); return similarity; } void PAD::AddPrimitivePoly( PCB_LAYER_ID aLayer, const SHAPE_POLY_SET& aPoly, int aThickness, bool aFilled ) { // If aPoly has holes, convert it to a polygon with no holes. SHAPE_POLY_SET poly_no_hole; poly_no_hole.Append( aPoly ); if( poly_no_hole.HasHoles() ) poly_no_hole.Fracture(); // There should never be multiple shapes, but if there are, we split them into // primitives so that we can edit them both. for( int ii = 0; ii < poly_no_hole.OutlineCount(); ++ii ) { SHAPE_POLY_SET poly_outline( poly_no_hole.COutline( ii ) ); PCB_SHAPE* item = new PCB_SHAPE(); item->SetShape( SHAPE_T::POLY ); item->SetFilled( aFilled ); item->SetPolyShape( poly_outline ); item->SetStroke( STROKE_PARAMS( aThickness, LINE_STYLE::SOLID ) ); item->SetParent( this ); m_padStack.AddPrimitive( item, aLayer ); } SetDirty(); } void PAD::AddPrimitivePoly( PCB_LAYER_ID aLayer, const std::vector& aPoly, int aThickness, bool aFilled ) { PCB_SHAPE* item = new PCB_SHAPE( nullptr, SHAPE_T::POLY ); item->SetFilled( aFilled ); item->SetPolyPoints( aPoly ); item->SetStroke( STROKE_PARAMS( aThickness, LINE_STYLE::SOLID ) ); item->SetParent( this ); m_padStack.AddPrimitive( item, aLayer ); SetDirty(); } void PAD::ReplacePrimitives( PCB_LAYER_ID aLayer, const std::vector>& aPrimitivesList ) { // clear old list DeletePrimitivesList( aLayer ); // Import to the given shape list if( aPrimitivesList.size() ) AppendPrimitives( aLayer, aPrimitivesList ); SetDirty(); } void PAD::AppendPrimitives( PCB_LAYER_ID aLayer, const std::vector>& aPrimitivesList ) { // Add duplicates of aPrimitivesList to the pad primitives list: for( const std::shared_ptr& prim : aPrimitivesList ) AddPrimitive( aLayer, new PCB_SHAPE( *prim ) ); SetDirty(); } void PAD::AddPrimitive( PCB_LAYER_ID aLayer, PCB_SHAPE* aPrimitive ) { aPrimitive->SetParent( this ); m_padStack.AddPrimitive( aPrimitive, aLayer ); SetDirty(); } void PAD::DeletePrimitivesList( PCB_LAYER_ID aLayer ) { if( aLayer == UNDEFINED_LAYER ) { m_padStack.ForEachUniqueLayer( [&]( PCB_LAYER_ID l ) { m_padStack.ClearPrimitives( l ); } ); } else { m_padStack.ClearPrimitives( aLayer); } SetDirty(); } void PAD::MergePrimitivesAsPolygon( PCB_LAYER_ID aLayer, SHAPE_POLY_SET* aMergedPolygon, ERROR_LOC aErrorLoc ) const { aMergedPolygon->RemoveAllContours(); // Add the anchor pad shape in aMergedPolygon, others in aux_polyset: // The anchor pad is always at 0,0 VECTOR2I padSize = GetSize( aLayer ); switch( GetAnchorPadShape( aLayer ) ) { case PAD_SHAPE::RECTANGLE: { SHAPE_RECT rect( -padSize.x / 2, -padSize.y / 2, padSize.x, padSize.y ); aMergedPolygon->AddOutline( rect.Outline() ); break; } default: case PAD_SHAPE::CIRCLE: TransformCircleToPolygon( *aMergedPolygon, VECTOR2I( 0, 0 ), padSize.x / 2, GetMaxError(), aErrorLoc ); break; } SHAPE_POLY_SET polyset; for( const std::shared_ptr& primitive : m_padStack.Primitives( aLayer ) ) { if( !primitive->IsProxyItem() ) primitive->TransformShapeToPolygon( polyset, UNDEFINED_LAYER, 0, GetMaxError(), aErrorLoc ); } polyset.Simplify(); // Merge all polygons with the initial pad anchor shape if( polyset.OutlineCount() ) { aMergedPolygon->BooleanAdd( polyset ); aMergedPolygon->Fracture(); } } static struct PAD_DESC { PAD_DESC() { ENUM_MAP::Instance() .Map( PAD_ATTRIB::PTH, _HKI( "Through-hole" ) ) .Map( PAD_ATTRIB::SMD, _HKI( "SMD" ) ) .Map( PAD_ATTRIB::CONN, _HKI( "Edge connector" ) ) .Map( PAD_ATTRIB::NPTH, _HKI( "NPTH, mechanical" ) ); ENUM_MAP::Instance() .Map( PAD_SHAPE::CIRCLE, _HKI( "Circle" ) ) .Map( PAD_SHAPE::RECTANGLE, _HKI( "Rectangle" ) ) .Map( PAD_SHAPE::OVAL, _HKI( "Oval" ) ) .Map( PAD_SHAPE::TRAPEZOID, _HKI( "Trapezoid" ) ) .Map( PAD_SHAPE::ROUNDRECT, _HKI( "Rounded rectangle" ) ) .Map( PAD_SHAPE::CHAMFERED_RECT, _HKI( "Chamfered rectangle" ) ) .Map( PAD_SHAPE::CUSTOM, _HKI( "Custom" ) ); ENUM_MAP::Instance() .Map( PAD_PROP::NONE, _HKI( "None" ) ) .Map( PAD_PROP::BGA, _HKI( "BGA pad" ) ) .Map( PAD_PROP::FIDUCIAL_GLBL, _HKI( "Fiducial, global to board" ) ) .Map( PAD_PROP::FIDUCIAL_LOCAL, _HKI( "Fiducial, local to footprint" ) ) .Map( PAD_PROP::TESTPOINT, _HKI( "Test point pad" ) ) .Map( PAD_PROP::HEATSINK, _HKI( "Heatsink pad" ) ) .Map( PAD_PROP::CASTELLATED, _HKI( "Castellated pad" ) ) .Map( PAD_PROP::MECHANICAL, _HKI( "Mechanical pad" ) ) .Map( PAD_PROP::PRESSFIT, _HKI( "Press-fit pad" ) ); ENUM_MAP::Instance() .Map( PAD_DRILL_SHAPE::CIRCLE, _HKI( "Round" ) ) .Map( PAD_DRILL_SHAPE::OBLONG, _HKI( "Oblong" ) ); ENUM_MAP& zcMap = ENUM_MAP::Instance(); if( zcMap.Choices().GetCount() == 0 ) { zcMap.Undefined( ZONE_CONNECTION::INHERITED ); zcMap.Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) ) .Map( ZONE_CONNECTION::NONE, _HKI( "None" ) ) .Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) ) .Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) ) .Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Thermal reliefs for PTH" ) ); } ENUM_MAP::Instance() .Map( PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL, _HKI( "All copper layers" ) ) .Map( PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL, _HKI( "Connected layers only" ) ) .Map( PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END, _HKI( "Front, back and connected layers" ) ) .Map( PADSTACK::UNCONNECTED_LAYER_MODE::START_END_ONLY, _HKI( "Start and end layers only" ) ); PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( PAD ); propMgr.InheritsAfter( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ) ); propMgr.Mask( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ) ); propMgr.Mask( TYPE_HASH( PAD ), TYPE_HASH( BOARD_ITEM ), _HKI( "Locked" ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Orientation" ), &PAD::SetOrientationDegrees, &PAD::GetOrientationDegrees, PROPERTY_DISPLAY::PT_DEGREE ) ); auto isCopperPad = []( INSPECTABLE* aItem ) -> bool { if( PAD* pad = dynamic_cast( aItem ) ) return pad->GetAttribute() != PAD_ATTRIB::NPTH; return false; }; auto padCanHaveHole = []( INSPECTABLE* aItem ) -> bool { if( PAD* pad = dynamic_cast( aItem ) ) return pad->GetAttribute() == PAD_ATTRIB::PTH || pad->GetAttribute() == PAD_ATTRIB::NPTH; return false; }; auto hasNormalPadstack = []( INSPECTABLE* aItem ) -> bool { if( PAD* pad = dynamic_cast( aItem ) ) return pad->Padstack().Mode() == PADSTACK::MODE::NORMAL; return true; }; propMgr.OverrideAvailability( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Net" ), isCopperPad ); propMgr.OverrideAvailability( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Net Class" ), isCopperPad ); const wxString groupPad = _HKI( "Pad Properties" ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Pad Type" ), &PAD::SetAttribute, &PAD::GetAttribute ), groupPad ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Pad Shape" ), &PAD::SetFrontShape, &PAD::GetFrontShape ), groupPad ) .SetAvailableFunc( hasNormalPadstack ); propMgr.AddProperty( new PROPERTY( _HKI( "Pad Number" ), &PAD::SetNumber, &PAD::GetNumber ), groupPad ) .SetAvailableFunc( isCopperPad ); propMgr.AddProperty( new PROPERTY( _HKI( "Pin Name" ), &PAD::SetPinFunction, &PAD::GetPinFunction ), groupPad ) .SetIsHiddenFromLibraryEditors(); propMgr.AddProperty( new PROPERTY( _HKI( "Pin Type" ), &PAD::SetPinType, &PAD::GetPinType ), groupPad ) .SetIsHiddenFromLibraryEditors() .SetChoicesFunc( []( INSPECTABLE* aItem ) { wxPGChoices choices; for( int ii = 0; ii < ELECTRICAL_PINTYPES_TOTAL; ii++ ) choices.Add( GetCanonicalElectricalTypeName( (ELECTRICAL_PINTYPE) ii ) ); return choices; } ); propMgr.AddProperty( new PROPERTY( _HKI( "Size X" ), &PAD::SetSizeX, &PAD::GetSizeX, PROPERTY_DISPLAY::PT_SIZE ), groupPad ) .SetAvailableFunc( hasNormalPadstack ); propMgr.AddProperty( new PROPERTY( _HKI( "Size Y" ), &PAD::SetSizeY, &PAD::GetSizeY, PROPERTY_DISPLAY::PT_SIZE ), groupPad ) .SetAvailableFunc( []( INSPECTABLE* aItem ) -> bool { if( PAD* pad = dynamic_cast( aItem ) ) { // Custom padstacks can't have size modified through panel if( pad->Padstack().Mode() != PADSTACK::MODE::NORMAL ) return false; // Circle pads have no usable y-size return pad->GetShape( PADSTACK::ALL_LAYERS ) != PAD_SHAPE::CIRCLE; } return true; } ); const auto hasRoundRadius = []( INSPECTABLE* aItem ) -> bool { if( PAD* pad = dynamic_cast( aItem ) ) { // Custom padstacks can't have this property modified through panel if( pad->Padstack().Mode() != PADSTACK::MODE::NORMAL ) return false; return PAD_UTILS::PadHasMeaningfulRoundingRadius( *pad, F_Cu ); } return false; }; propMgr.AddProperty( new PROPERTY( _HKI( "Corner Radius Ratio" ), &PAD::SetFrontRoundRectRadiusRatio, &PAD::GetFrontRoundRectRadiusRatio ), groupPad ) .SetAvailableFunc( hasRoundRadius ); propMgr.AddProperty( new PROPERTY( _HKI( "Corner Radius Size" ), &PAD::SetFrontRoundRectRadiusSize, &PAD::GetFrontRoundRectRadiusSize, PROPERTY_DISPLAY::PT_SIZE ), groupPad ) .SetAvailableFunc( hasRoundRadius ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Hole Shape" ), &PAD::SetDrillShape, &PAD::GetDrillShape ), groupPad ) .SetWriteableFunc( padCanHaveHole ); propMgr.AddProperty( new PROPERTY( _HKI( "Hole Size X" ), &PAD::SetDrillSizeX, &PAD::GetDrillSizeX, PROPERTY_DISPLAY::PT_SIZE ), groupPad ) .SetWriteableFunc( padCanHaveHole ) .SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator ); propMgr.AddProperty( new PROPERTY( _HKI( "Hole Size Y" ), &PAD::SetDrillSizeY, &PAD::GetDrillSizeY, PROPERTY_DISPLAY::PT_SIZE ), groupPad ) .SetWriteableFunc( padCanHaveHole ) .SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator ) .SetAvailableFunc( []( INSPECTABLE* aItem ) -> bool { // Circle holes have no usable y-size if( PAD* pad = dynamic_cast( aItem ) ) return pad->GetDrillShape() != PAD_DRILL_SHAPE::CIRCLE; return true; } ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Fabrication Property" ), &PAD::SetProperty, &PAD::GetProperty ), groupPad ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Copper Layers" ), &PAD::SetUnconnectedLayerMode, &PAD::GetUnconnectedLayerMode ), groupPad ); propMgr.AddProperty( new PROPERTY( _HKI( "Pad To Die Length" ), &PAD::SetPadToDieLength, &PAD::GetPadToDieLength, PROPERTY_DISPLAY::PT_SIZE ), groupPad ) .SetAvailableFunc( isCopperPad ); propMgr.AddProperty( new PROPERTY( _HKI( "Pad To Die Delay" ), &PAD::SetPadToDieDelay, &PAD::GetPadToDieDelay, PROPERTY_DISPLAY::PT_TIME ), groupPad ) .SetAvailableFunc( isCopperPad ); const wxString groupOverrides = _HKI( "Overrides" ); propMgr.AddProperty( new PROPERTY>( _HKI( "Clearance Override" ), &PAD::SetLocalClearance, &PAD::GetLocalClearance, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ); propMgr.AddProperty( new PROPERTY>( _HKI( "Soldermask Margin Override" ), &PAD::SetLocalSolderMaskMargin, &PAD::GetLocalSolderMaskMargin, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ); propMgr.AddProperty( new PROPERTY>( _HKI( "Solderpaste Margin Override" ), &PAD::SetLocalSolderPasteMargin, &PAD::GetLocalSolderPasteMargin, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ); propMgr.AddProperty( new PROPERTY>( _HKI( "Solderpaste Margin Ratio Override" ), &PAD::SetLocalSolderPasteMarginRatio, &PAD::GetLocalSolderPasteMarginRatio, PROPERTY_DISPLAY::PT_RATIO ), groupOverrides ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Zone Connection Style" ), &PAD::SetLocalZoneConnection, &PAD::GetLocalZoneConnection ), groupOverrides ); constexpr int minZoneWidth = pcbIUScale.mmToIU( ZONE_THICKNESS_MIN_VALUE_MM ); propMgr.AddProperty( new PROPERTY>( _HKI( "Thermal Relief Spoke Width" ), &PAD::SetLocalThermalSpokeWidthOverride, &PAD::GetLocalThermalSpokeWidthOverride, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ) .SetValidator( PROPERTY_VALIDATORS::RangeIntValidator ); propMgr.AddProperty( new PROPERTY( _HKI( "Thermal Relief Spoke Angle" ), &PAD::SetThermalSpokeAngleDegrees, &PAD::GetThermalSpokeAngleDegrees, PROPERTY_DISPLAY::PT_DEGREE ), groupOverrides ); propMgr.AddProperty( new PROPERTY>( _HKI( "Thermal Relief Gap" ), &PAD::SetLocalThermalGapOverride, &PAD::GetLocalThermalGapOverride, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ) .SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator ); // TODO delta, drill shape offset, layer set } } _PAD_DESC; ENUM_TO_WXANY( PAD_ATTRIB ); ENUM_TO_WXANY( PAD_SHAPE ); ENUM_TO_WXANY( PAD_PROP ); ENUM_TO_WXANY( PAD_DRILL_SHAPE );