kicad-source/pcbnew/footprint.cpp
Jeff Young f58fc0b952 Rewrite GROUP undo based on uuids.
This also removes the GROUP/UNGROUP-specific undo actions.

This also fixes a bunch of undo bugs when duplicating
group members, creating pins, etc.

This also fixes some undo bugs when dividing wires etc.

This also fixes some bugs with new sch items not
being created within an entered group.
2025-05-21 14:24:59 +01:00

4194 lines
127 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2015 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2015 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <magic_enum.hpp>
#include <unordered_set>
#include <bitmaps.h>
#include <board.h>
#include <board_design_settings.h>
#include <confirm.h>
#include <convert_basic_shapes_to_polygon.h>
#include <convert_shape_list_to_polygon.h>
#include <component_classes/component_class.h>
#include <component_classes/component_class_cache_proxy.h>
#include <drc/drc_item.h>
#include <embedded_files.h>
#include <font/font.h>
#include <font/outline_font.h>
#include <footprint.h>
#include <geometry/convex_hull.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <i18n_utility.h>
#include <lset.h>
#include <macros.h>
#include <pad.h>
#include <pcb_dimension.h>
#include <pcb_edit_frame.h>
#include <pcb_field.h>
#include <pcb_group.h>
#include <pcb_marker.h>
#include <pcb_reference_image.h>
#include <pcb_textbox.h>
#include <pcb_track.h>
#include <refdes_utils.h>
#include <string_utils.h>
#include <view/view.h>
#include <zone.h>
#include <google/protobuf/any.pb.h>
#include <api/board/board_types.pb.h>
#include <api/api_enums.h>
#include <api/api_utils.h>
#include <api/api_pcb_utils.h>
#include <wx/log.h>
FOOTPRINT::FOOTPRINT( BOARD* parent ) :
BOARD_ITEM_CONTAINER( (BOARD_ITEM*) parent, PCB_FOOTPRINT_T ),
m_boundingBoxCacheTimeStamp( 0 ), m_textExcludedBBoxCacheTimeStamp( 0 ),
m_hullCacheTimeStamp( 0 ), m_initial_comments( nullptr ),
m_componentClassCacheProxy( std::make_unique<COMPONENT_CLASS_CACHE_PROXY>( this ) )
{
m_attributes = 0;
m_layer = F_Cu;
m_orient = ANGLE_0;
m_fpStatus = FP_PADS_are_LOCKED;
m_arflag = 0;
m_link = 0;
m_lastEditTime = 0;
m_zoneConnection = ZONE_CONNECTION::INHERITED;
m_fileFormatVersionAtLoad = 0;
m_embedFonts = false;
auto addField =
[this]( FIELD_T id, PCB_LAYER_ID layer, bool visible )
{
PCB_FIELD* field = new PCB_FIELD( this, id );
field->SetLayer( layer );
field->SetVisible( visible );
m_fields.push_back( field );
};
addField( FIELD_T::REFERENCE, F_SilkS, true );
addField( FIELD_T::VALUE, F_Fab, true );
addField( FIELD_T::DATASHEET, F_Fab, false );
addField( FIELD_T::DESCRIPTION, F_Fab, false );
m_3D_Drawings.clear();
}
FOOTPRINT::FOOTPRINT( const FOOTPRINT& aFootprint ) :
BOARD_ITEM_CONTAINER( aFootprint ), EMBEDDED_FILES( aFootprint ),
m_componentClassCacheProxy( std::make_unique<COMPONENT_CLASS_CACHE_PROXY>( this ) )
{
m_pos = aFootprint.m_pos;
m_fpid = aFootprint.m_fpid;
m_attributes = aFootprint.m_attributes;
m_fpStatus = aFootprint.m_fpStatus;
m_orient = aFootprint.m_orient;
m_lastEditTime = aFootprint.m_lastEditTime;
m_link = aFootprint.m_link;
m_path = aFootprint.m_path;
m_embedFonts = aFootprint.m_embedFonts;
m_cachedBoundingBox = aFootprint.m_cachedBoundingBox;
m_boundingBoxCacheTimeStamp = aFootprint.m_boundingBoxCacheTimeStamp;
m_cachedTextExcludedBBox = aFootprint.m_cachedTextExcludedBBox;
m_textExcludedBBoxCacheTimeStamp = aFootprint.m_textExcludedBBoxCacheTimeStamp;
m_cachedHull = aFootprint.m_cachedHull;
m_hullCacheTimeStamp = aFootprint.m_hullCacheTimeStamp;
m_clearance = aFootprint.m_clearance;
m_solderMaskMargin = aFootprint.m_solderMaskMargin;
m_solderPasteMargin = aFootprint.m_solderPasteMargin;
m_solderPasteMarginRatio = aFootprint.m_solderPasteMarginRatio;
m_zoneConnection = aFootprint.m_zoneConnection;
m_netTiePadGroups = aFootprint.m_netTiePadGroups;
m_fileFormatVersionAtLoad = aFootprint.m_fileFormatVersionAtLoad;
m_duplicatePadNumbersAreJumpers = aFootprint.m_duplicatePadNumbersAreJumpers;
std::ranges::copy( aFootprint.m_jumperPadGroups,
std::inserter( m_jumperPadGroups, m_jumperPadGroups.end() ) );
std::map<EDA_ITEM*, EDA_ITEM*> ptrMap;
// Copy fields
for( PCB_FIELD* field : aFootprint.m_fields )
{
if( field->IsMandatory() )
{
PCB_FIELD* existingField = GetField( field->GetId() );
ptrMap[field] = existingField;
*existingField = *field;
existingField->SetParent( this );
}
else
{
PCB_FIELD* newField = static_cast<PCB_FIELD*>( field->Clone() );
ptrMap[field] = newField;
Add( newField );
}
}
// Copy pads
for( PAD* pad : aFootprint.Pads() )
{
PAD* newPad = static_cast<PAD*>( pad->Clone() );
ptrMap[ pad ] = newPad;
Add( newPad, ADD_MODE::APPEND ); // Append to ensure indexes are identical
}
// Copy zones
for( ZONE* zone : aFootprint.Zones() )
{
ZONE* newZone = static_cast<ZONE*>( zone->Clone() );
ptrMap[ zone ] = newZone;
Add( newZone, ADD_MODE::APPEND ); // Append to ensure indexes are identical
// Ensure the net info is OK and especially uses the net info list
// living in the current board
// Needed when copying a fp from fp editor that has its own board
// Must be NETINFO_LIST::ORPHANED_ITEM for a keepout that has no net.
newZone->SetNetCode( -1 );
}
// Copy drawings
for( BOARD_ITEM* item : aFootprint.GraphicalItems() )
{
BOARD_ITEM* newItem = static_cast<BOARD_ITEM*>( item->Clone() );
ptrMap[ item ] = newItem;
Add( newItem, ADD_MODE::APPEND ); // Append to ensure indexes are identical
}
// Copy groups
for( PCB_GROUP* group : aFootprint.Groups() )
{
PCB_GROUP* newGroup = static_cast<PCB_GROUP*>( group->Clone() );
ptrMap[ group ] = newGroup;
Add( newGroup, ADD_MODE::APPEND ); // Append to ensure indexes are identical
}
// Rebuild groups
for( PCB_GROUP* group : aFootprint.Groups() )
{
PCB_GROUP* newGroup = static_cast<PCB_GROUP*>( ptrMap[ group ] );
newGroup->GetItems().clear();
for( EDA_ITEM* member : group->GetItems() )
{
if( ptrMap.count( member ) )
newGroup->AddItem( ptrMap[ member ] );
}
}
for( auto& [ name, file ] : aFootprint.EmbeddedFileMap() )
AddFile( new EMBEDDED_FILES::EMBEDDED_FILE( *file ) );
// Copy auxiliary data
m_3D_Drawings = aFootprint.m_3D_Drawings;
m_libDescription = aFootprint.m_libDescription;
m_keywords = aFootprint.m_keywords;
m_privateLayers = aFootprint.m_privateLayers;
m_arflag = 0;
m_initial_comments = aFootprint.m_initial_comments ?
new wxArrayString( *aFootprint.m_initial_comments ) : nullptr;
}
FOOTPRINT::FOOTPRINT( FOOTPRINT&& aFootprint ) :
BOARD_ITEM_CONTAINER( aFootprint )
{
*this = std::move( aFootprint );
}
FOOTPRINT::~FOOTPRINT()
{
// Clean up the owned elements
delete m_initial_comments;
for( PCB_FIELD* f : m_fields )
delete f;
m_fields.clear();
for( PAD* p : m_pads )
delete p;
m_pads.clear();
for( ZONE* zone : m_zones )
delete zone;
m_zones.clear();
for( PCB_GROUP* group : m_groups )
delete group;
m_groups.clear();
for( BOARD_ITEM* d : m_drawings )
delete d;
m_drawings.clear();
if( BOARD* board = GetBoard() )
board->IncrementTimeStamp();
}
void FOOTPRINT::Serialize( google::protobuf::Any &aContainer ) const
{
using namespace kiapi::board;
types::FootprintInstance footprint;
footprint.mutable_id()->set_value( m_Uuid.AsStdString() );
footprint.mutable_position()->set_x_nm( GetPosition().x );
footprint.mutable_position()->set_y_nm( GetPosition().y );
footprint.mutable_orientation()->set_value_degrees( GetOrientationDegrees() );
footprint.set_layer( ToProtoEnum<PCB_LAYER_ID, types::BoardLayer>( GetLayer() ) );
footprint.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED
: kiapi::common::types::LockedState::LS_UNLOCKED );
google::protobuf::Any buf;
GetField( FIELD_T::REFERENCE )->Serialize( buf );
buf.UnpackTo( footprint.mutable_reference_field() );
GetField( FIELD_T::VALUE )->Serialize( buf );
buf.UnpackTo( footprint.mutable_value_field() );
GetField( FIELD_T::DATASHEET )->Serialize( buf );
buf.UnpackTo( footprint.mutable_datasheet_field() );
GetField( FIELD_T::DESCRIPTION )->Serialize( buf );
buf.UnpackTo( footprint.mutable_description_field() );
types::FootprintAttributes* attrs = footprint.mutable_attributes();
attrs->set_not_in_schematic( IsBoardOnly() );
attrs->set_exclude_from_position_files( IsExcludedFromPosFiles() );
attrs->set_exclude_from_bill_of_materials( IsExcludedFromBOM() );
attrs->set_exempt_from_courtyard_requirement( AllowMissingCourtyard() );
attrs->set_do_not_populate( IsDNP() );
if( m_attributes & FP_THROUGH_HOLE )
attrs->set_mounting_style( types::FootprintMountingStyle::FMS_THROUGH_HOLE );
else if( m_attributes & FP_SMD )
attrs->set_mounting_style( types::FootprintMountingStyle::FMS_SMD );
else
attrs->set_mounting_style( types::FootprintMountingStyle::FMS_UNSPECIFIED );
types::Footprint* def = footprint.mutable_definition();
def->mutable_id()->CopyFrom( kiapi::common::LibIdToProto( GetFPID() ) );
// anchor?
def->mutable_attributes()->set_description( GetLibDescription().ToStdString() );
def->mutable_attributes()->set_keywords( GetKeywords().ToStdString() );
// TODO: serialize library mandatory fields
types::FootprintDesignRuleOverrides* overrides = def->mutable_overrides();
if( GetLocalClearance().has_value() )
overrides->mutable_copper_clearance()->set_value_nm( *GetLocalClearance() );
if( GetLocalSolderMaskMargin().has_value() )
overrides->mutable_solder_mask()->mutable_solder_mask_margin()->set_value_nm( *GetLocalSolderMaskMargin() );
if( GetLocalSolderPasteMargin().has_value() )
overrides->mutable_solder_paste()->mutable_solder_paste_margin()->set_value_nm( *GetLocalSolderPasteMargin() );
if( GetLocalSolderPasteMarginRatio().has_value() )
overrides->mutable_solder_paste()->mutable_solder_paste_margin_ratio()->set_value( *GetLocalSolderPasteMarginRatio() );
overrides->set_zone_connection(
ToProtoEnum<ZONE_CONNECTION, types::ZoneConnectionStyle>( GetLocalZoneConnection() ) );
for( const wxString& group : GetNetTiePadGroups() )
{
types::NetTieDefinition* netTie = def->add_net_ties();
wxStringTokenizer tokenizer( group, " " );
while( tokenizer.HasMoreTokens() )
netTie->add_pad_number( tokenizer.GetNextToken().ToStdString() );
}
for( PCB_LAYER_ID layer : GetPrivateLayers().Seq() )
def->add_private_layers( ToProtoEnum<PCB_LAYER_ID, types::BoardLayer>( layer ) );
for( const PCB_FIELD* item : m_fields )
{
if( item->IsMandatory() )
continue;
google::protobuf::Any* itemMsg = def->add_items();
item->Serialize( *itemMsg );
}
for( const PAD* item : Pads() )
{
google::protobuf::Any* itemMsg = def->add_items();
item->Serialize( *itemMsg );
}
for( const BOARD_ITEM* item : GraphicalItems() )
{
google::protobuf::Any* itemMsg = def->add_items();
item->Serialize( *itemMsg );
}
for( const ZONE* item : Zones() )
{
google::protobuf::Any* itemMsg = def->add_items();
item->Serialize( *itemMsg );
}
for( const FP_3DMODEL& model : Models() )
{
google::protobuf::Any* itemMsg = def->add_items();
types::Footprint3DModel modelMsg;
modelMsg.set_filename( model.m_Filename.ToUTF8() );
kiapi::common::PackVector3D( *modelMsg.mutable_scale(), model.m_Scale );
kiapi::common::PackVector3D( *modelMsg.mutable_rotation(), model.m_Rotation );
kiapi::common::PackVector3D( *modelMsg.mutable_offset(), model.m_Offset );
modelMsg.set_visible( model.m_Show );
modelMsg.set_opacity( model.m_Opacity );
itemMsg->PackFrom( modelMsg );
}
// Serialized only (can't modify this from the API to change the symbol mapping)
kiapi::common::PackSheetPath( *footprint.mutable_symbol_path(), m_path );
aContainer.PackFrom( footprint );
}
bool FOOTPRINT::Deserialize( const google::protobuf::Any &aContainer )
{
using namespace kiapi::board;
types::FootprintInstance footprint;
if( !aContainer.UnpackTo( &footprint ) )
return false;
const_cast<KIID&>( m_Uuid ) = KIID( footprint.id().value() );
SetPosition( VECTOR2I( footprint.position().x_nm(), footprint.position().y_nm() ) );
SetOrientationDegrees( footprint.orientation().value_degrees() );
SetLayer( FromProtoEnum<PCB_LAYER_ID, types::BoardLayer>( footprint.layer() ) );
SetLocked( footprint.locked() == kiapi::common::types::LockedState::LS_LOCKED );
google::protobuf::Any buf;
types::Field mandatoryField;
if( footprint.has_reference_field() )
{
mandatoryField = footprint.reference_field();
mandatoryField.mutable_id()->set_id( (int) FIELD_T::REFERENCE );
buf.PackFrom( mandatoryField );
GetField( FIELD_T::REFERENCE )->Deserialize( buf );
}
if( footprint.has_value_field() )
{
mandatoryField = footprint.value_field();
mandatoryField.mutable_id()->set_id( (int) FIELD_T::VALUE );
buf.PackFrom( mandatoryField );
GetField( FIELD_T::VALUE )->Deserialize( buf );
}
if( footprint.has_datasheet_field() )
{
mandatoryField = footprint.datasheet_field();
mandatoryField.mutable_id()->set_id( (int) FIELD_T::DATASHEET );
buf.PackFrom( mandatoryField );
GetField( FIELD_T::DATASHEET )->Deserialize( buf );
}
if( footprint.has_description_field() )
{
mandatoryField = footprint.description_field();
mandatoryField.mutable_id()->set_id( (int) FIELD_T::DESCRIPTION );
buf.PackFrom( mandatoryField );
GetField( FIELD_T::DESCRIPTION )->Deserialize( buf );
}
m_attributes = 0;
switch( footprint.attributes().mounting_style() )
{
case types::FootprintMountingStyle::FMS_THROUGH_HOLE:
m_attributes |= FP_THROUGH_HOLE;
break;
case types::FootprintMountingStyle::FMS_SMD:
m_attributes |= FP_SMD;
break;
default:
break;
}
SetBoardOnly( footprint.attributes().not_in_schematic() );
SetExcludedFromBOM( footprint.attributes().exclude_from_bill_of_materials() );
SetExcludedFromPosFiles( footprint.attributes().exclude_from_position_files() );
SetAllowMissingCourtyard( footprint.attributes().exempt_from_courtyard_requirement() );
SetDNP( footprint.attributes().do_not_populate() );
// Definition
SetFPID( kiapi::common::LibIdFromProto( footprint.definition().id() ) );
// TODO: how should anchor be handled?
SetLibDescription( footprint.definition().attributes().description() );
SetKeywords( footprint.definition().attributes().keywords() );
const types::FootprintDesignRuleOverrides& overrides = footprint.overrides();
if( overrides.has_copper_clearance() )
SetLocalClearance( overrides.copper_clearance().value_nm() );
else
SetLocalClearance( std::nullopt );
if( overrides.has_solder_mask() && overrides.solder_mask().has_solder_mask_margin() )
SetLocalSolderMaskMargin( overrides.solder_mask().solder_mask_margin().value_nm() );
else
SetLocalSolderMaskMargin( std::nullopt );
if( overrides.has_solder_paste() )
{
const types::SolderPasteOverrides& pasteSettings = overrides.solder_paste();
if( pasteSettings.has_solder_paste_margin() )
SetLocalSolderPasteMargin( pasteSettings.solder_paste_margin().value_nm() );
else
SetLocalSolderPasteMargin( std::nullopt );
if( pasteSettings.has_solder_paste_margin_ratio() )
SetLocalSolderPasteMarginRatio( pasteSettings.solder_paste_margin_ratio().value() );
else
SetLocalSolderPasteMarginRatio( std::nullopt );
}
SetLocalZoneConnection( FromProtoEnum<ZONE_CONNECTION>( overrides.zone_connection() ) );
for( const types::NetTieDefinition& netTieMsg : footprint.definition().net_ties() )
{
wxString group;
for( const std::string& pad : netTieMsg.pad_number() )
group.Append( wxString::Format( wxT( "%s " ), pad ) );
group.Trim();
AddNetTiePadGroup( group );
}
LSET privateLayers;
for( int layerMsg : footprint.definition().private_layers() )
{
auto layer = static_cast<types::BoardLayer>( layerMsg );
privateLayers.set( FromProtoEnum<PCB_LAYER_ID, types::BoardLayer>( layer ) );
}
SetPrivateLayers( privateLayers );
// Footprint items
for( PCB_FIELD* field : m_fields )
{
if( !field->IsMandatory() )
Remove( field );
}
Pads().clear();
GraphicalItems().clear();
Zones().clear();
Groups().clear();
Models().clear();
for( const google::protobuf::Any& itemMsg : footprint.definition().items() )
{
std::optional<KICAD_T> type = kiapi::common::TypeNameFromAny( itemMsg );
if( !type )
{
// Bit of a hack here, but eventually 3D models should be promoted to a first-class
// object, at which point they can get their own serialization
if( itemMsg.type_url() == "type.googleapis.com/kiapi.board.types.Footprint3DModel" )
{
types::Footprint3DModel modelMsg;
if( !itemMsg.UnpackTo( &modelMsg ) )
continue;
FP_3DMODEL model;
model.m_Filename = wxString::FromUTF8( modelMsg.filename() );
model.m_Show = modelMsg.visible();
model.m_Opacity = modelMsg.opacity();
model.m_Scale = kiapi::common::UnpackVector3D( modelMsg.scale() );
model.m_Rotation = kiapi::common::UnpackVector3D( modelMsg.rotation() );
model.m_Offset = kiapi::common::UnpackVector3D( modelMsg.offset() );
Models().push_back( model );
}
else
{
wxLogTrace( traceApi, wxString::Format( wxS( "Attempting to unpack unknown type %s "
"from footprint message, skipping" ),
itemMsg.type_url() ) );
}
continue;
}
std::unique_ptr<BOARD_ITEM> item = CreateItemForType( *type, this );
if( item && item->Deserialize( itemMsg ) )
Add( item.release(), ADD_MODE::APPEND );
}
return true;
}
PCB_FIELD* FOOTPRINT::GetField( FIELD_T aFieldType )
{
for( PCB_FIELD* field : m_fields )
{
if( field->GetId() == aFieldType )
return field;
}
PCB_FIELD* field = new PCB_FIELD( this, aFieldType );
m_fields.push_back( field );
return field;
}
const PCB_FIELD* FOOTPRINT::GetField( FIELD_T aFieldType ) const
{
for( const PCB_FIELD* field : m_fields )
{
if( field->GetId() == aFieldType )
return field;
}
return nullptr;
}
bool FOOTPRINT::HasField( const wxString& aFieldName ) const
{
return GetField( aFieldName ) != nullptr;
}
PCB_FIELD* FOOTPRINT::GetField( const wxString& aFieldName ) const
{
for( PCB_FIELD* field : m_fields )
{
if( field->GetName() == aFieldName )
return field;
}
return nullptr;
}
void FOOTPRINT::GetFields( std::vector<PCB_FIELD*>& aVector, bool aVisibleOnly ) const
{
aVector.clear();
for( PCB_FIELD* field : m_fields )
{
if( aVisibleOnly )
{
if( !field->IsVisible() || field->GetText().IsEmpty() )
continue;
}
aVector.push_back( field );
}
std::sort( aVector.begin(), aVector.end(),
[]( PCB_FIELD* lhs, PCB_FIELD* rhs )
{
return lhs->GetOrdinal() < rhs->GetOrdinal();
} );
}
int FOOTPRINT::GetNextFieldOrdinal() const
{
int ordinal = 42; // Arbitrarily larger than any mandatory FIELD_T id
for( const PCB_FIELD* field : m_fields )
ordinal = std::max( ordinal, field->GetOrdinal() + 1 );
return ordinal;
}
void FOOTPRINT::ApplyDefaultSettings( const BOARD& board, bool aStyleFields, bool aStyleText,
bool aStyleShapes )
{
if( aStyleFields )
{
for( PCB_FIELD* field : m_fields )
field->StyleFromSettings( board.GetDesignSettings() );
}
for( BOARD_ITEM* item : m_drawings )
{
switch( item->Type() )
{
case PCB_TEXT_T:
case PCB_TEXTBOX_T:
if( aStyleText )
item->StyleFromSettings( board.GetDesignSettings() );
break;
case PCB_SHAPE_T:
if( aStyleShapes && !item->IsOnCopperLayer() )
item->StyleFromSettings( board.GetDesignSettings() );
break;
default:
break;
}
}
}
bool FOOTPRINT::FixUuids()
{
// replace null UUIDs if any by a valid uuid
std::vector< BOARD_ITEM* > item_list;
for( PCB_FIELD* field : m_fields )
item_list.push_back( field );
for( PAD* pad : m_pads )
item_list.push_back( pad );
for( BOARD_ITEM* gr_item : m_drawings )
item_list.push_back( gr_item );
// Note: one cannot fix null UUIDs inside the group, but it should not happen
// because null uuids can be found in old footprints, therefore without group
for( PCB_GROUP* group : m_groups )
item_list.push_back( group );
// Probably notneeded, because old fp do not have zones. But just in case.
for( ZONE* zone : m_zones )
item_list.push_back( zone );
bool changed = false;
for( BOARD_ITEM* item : item_list )
{
if( item->m_Uuid == niluuid )
{
const_cast<KIID&>( item->m_Uuid ) = KIID();
changed = true;
}
}
return changed;
}
FOOTPRINT& FOOTPRINT::operator=( FOOTPRINT&& aOther )
{
BOARD_ITEM::operator=( aOther );
m_pos = aOther.m_pos;
m_fpid = aOther.m_fpid;
m_attributes = aOther.m_attributes;
m_fpStatus = aOther.m_fpStatus;
m_orient = aOther.m_orient;
m_lastEditTime = aOther.m_lastEditTime;
m_link = aOther.m_link;
m_path = aOther.m_path;
m_cachedBoundingBox = aOther.m_cachedBoundingBox;
m_boundingBoxCacheTimeStamp = aOther.m_boundingBoxCacheTimeStamp;
m_cachedTextExcludedBBox = aOther.m_cachedTextExcludedBBox;
m_textExcludedBBoxCacheTimeStamp = aOther.m_textExcludedBBoxCacheTimeStamp;
m_cachedHull = aOther.m_cachedHull;
m_hullCacheTimeStamp = aOther.m_hullCacheTimeStamp;
m_clearance = aOther.m_clearance;
m_solderMaskMargin = aOther.m_solderMaskMargin;
m_solderPasteMargin = aOther.m_solderPasteMargin;
m_solderPasteMarginRatio = aOther.m_solderPasteMarginRatio;
m_zoneConnection = aOther.m_zoneConnection;
m_netTiePadGroups = aOther.m_netTiePadGroups;
m_duplicatePadNumbersAreJumpers = aOther.m_duplicatePadNumbersAreJumpers;
std::ranges::copy( aOther.m_jumperPadGroups,
std::inserter( m_jumperPadGroups, m_jumperPadGroups.end() ) );
// Move the fields
for( PCB_FIELD* field : m_fields )
delete field;
m_fields.clear();
for( PCB_FIELD* field : aOther.m_fields )
Add( field );
aOther.m_fields.clear();
// Move the pads
for( PAD* pad : m_pads )
delete pad;
m_pads.clear();
for( PAD* pad : aOther.Pads() )
Add( pad );
aOther.Pads().clear();
// Move the zones
for( ZONE* zone : m_zones )
delete zone;
m_zones.clear();
for( ZONE* item : aOther.Zones() )
{
Add( item );
// Ensure the net info is OK and especially uses the net info list
// living in the current board
// Needed when copying a fp from fp editor that has its own board
// Must be NETINFO_LIST::ORPHANED_ITEM for a keepout that has no net.
item->SetNetCode( -1 );
}
aOther.Zones().clear();
// Move the drawings
for( BOARD_ITEM* item : m_drawings )
delete item;
m_drawings.clear();
for( BOARD_ITEM* item : aOther.GraphicalItems() )
Add( item );
aOther.GraphicalItems().clear();
// Move the groups
for( PCB_GROUP* group : m_groups )
delete group;
m_groups.clear();
for( PCB_GROUP* group : aOther.Groups() )
Add( group );
aOther.Groups().clear();
EMBEDDED_FILES::operator=( std::move( aOther ) );
// Copy auxiliary data
m_3D_Drawings = aOther.m_3D_Drawings;
m_libDescription = aOther.m_libDescription;
m_keywords = aOther.m_keywords;
m_privateLayers = aOther.m_privateLayers;
m_initial_comments = aOther.m_initial_comments;
// Clear the other item's containers since this is a move
aOther.m_fields.clear();
aOther.Pads().clear();
aOther.Zones().clear();
aOther.GraphicalItems().clear();
aOther.m_initial_comments = nullptr;
return *this;
}
FOOTPRINT& FOOTPRINT::operator=( const FOOTPRINT& aOther )
{
BOARD_ITEM::operator=( aOther );
m_pos = aOther.m_pos;
m_fpid = aOther.m_fpid;
m_attributes = aOther.m_attributes;
m_fpStatus = aOther.m_fpStatus;
m_orient = aOther.m_orient;
m_lastEditTime = aOther.m_lastEditTime;
m_link = aOther.m_link;
m_path = aOther.m_path;
m_cachedBoundingBox = aOther.m_cachedBoundingBox;
m_boundingBoxCacheTimeStamp = aOther.m_boundingBoxCacheTimeStamp;
m_cachedTextExcludedBBox = aOther.m_cachedTextExcludedBBox;
m_textExcludedBBoxCacheTimeStamp = aOther.m_textExcludedBBoxCacheTimeStamp;
m_cachedHull = aOther.m_cachedHull;
m_hullCacheTimeStamp = aOther.m_hullCacheTimeStamp;
m_clearance = aOther.m_clearance;
m_solderMaskMargin = aOther.m_solderMaskMargin;
m_solderPasteMargin = aOther.m_solderPasteMargin;
m_solderPasteMarginRatio = aOther.m_solderPasteMarginRatio;
m_zoneConnection = aOther.m_zoneConnection;
m_netTiePadGroups = aOther.m_netTiePadGroups;
std::map<EDA_ITEM*, EDA_ITEM*> ptrMap;
// Copy fields
m_fields.clear();
for( PCB_FIELD* field : aOther.m_fields )
{
PCB_FIELD* newField = new PCB_FIELD( *field );
ptrMap[field] = newField;
Add( newField );
}
// Copy pads
m_pads.clear();
for( PAD* pad : aOther.Pads() )
{
PAD* newPad = new PAD( *pad );
ptrMap[ pad ] = newPad;
Add( newPad );
}
// Copy zones
m_zones.clear();
for( ZONE* zone : aOther.Zones() )
{
ZONE* newZone = static_cast<ZONE*>( zone->Clone() );
ptrMap[ zone ] = newZone;
Add( newZone );
// Ensure the net info is OK and especially uses the net info list
// living in the current board
// Needed when copying a fp from fp editor that has its own board
// Must be NETINFO_LIST::ORPHANED_ITEM for a keepout that has no net.
newZone->SetNetCode( -1 );
}
// Copy drawings
m_drawings.clear();
for( BOARD_ITEM* item : aOther.GraphicalItems() )
{
BOARD_ITEM* newItem = static_cast<BOARD_ITEM*>( item->Clone() );
ptrMap[ item ] = newItem;
Add( newItem );
}
// Copy groups
m_groups.clear();
for( PCB_GROUP* group : aOther.Groups() )
{
PCB_GROUP* newGroup = static_cast<PCB_GROUP*>( group->Clone() );
newGroup->GetItems().clear();
for( EDA_ITEM* member : group->GetItems() )
newGroup->AddItem( ptrMap[ member ] );
Add( newGroup );
}
// Copy auxiliary data
m_3D_Drawings = aOther.m_3D_Drawings;
m_libDescription = aOther.m_libDescription;
m_keywords = aOther.m_keywords;
m_privateLayers = aOther.m_privateLayers;
m_initial_comments = aOther.m_initial_comments ?
new wxArrayString( *aOther.m_initial_comments ) : nullptr;
EMBEDDED_FILES::operator=( aOther );
return *this;
}
void FOOTPRINT::CopyFrom( const BOARD_ITEM* aOther )
{
wxCHECK( aOther && aOther->Type() == PCB_FOOTPRINT_T, /* void */ );
*this = *static_cast<const FOOTPRINT*>( aOther );
for( PAD* pad : m_pads )
pad->SetDirty();
}
void FOOTPRINT::InvalidateGeometryCaches()
{
m_boundingBoxCacheTimeStamp = 0;
m_textExcludedBBoxCacheTimeStamp = 0;
m_hullCacheTimeStamp = 0;
m_courtyard_cache_back_hash.Clear();
m_courtyard_cache_front_hash.Clear();
}
bool FOOTPRINT::IsConflicting() const
{
return HasFlag( COURTYARD_CONFLICT );
}
void FOOTPRINT::GetContextualTextVars( wxArrayString* aVars ) const
{
aVars->push_back( wxT( "REFERENCE" ) );
aVars->push_back( wxT( "VALUE" ) );
aVars->push_back( wxT( "LAYER" ) );
aVars->push_back( wxT( "FOOTPRINT_LIBRARY" ) );
aVars->push_back( wxT( "FOOTPRINT_NAME" ) );
aVars->push_back( wxT( "SHORT_NET_NAME(<pad_number>)" ) );
aVars->push_back( wxT( "NET_NAME(<pad_number>)" ) );
aVars->push_back( wxT( "NET_CLASS(<pad_number>)" ) );
aVars->push_back( wxT( "PIN_NAME(<pad_number>)" ) );
}
bool FOOTPRINT::ResolveTextVar( wxString* token, int aDepth ) const
{
if( GetBoard() && GetBoard()->GetBoardUse() == BOARD_USE::FPHOLDER )
return false;
if( token->IsSameAs( wxT( "REFERENCE" ) ) )
{
*token = Reference().GetShownText( false, aDepth + 1 );
return true;
}
else if( token->IsSameAs( wxT( "VALUE" ) ) )
{
*token = Value().GetShownText( false, aDepth + 1 );
return true;
}
else if( token->IsSameAs( wxT( "LAYER" ) ) )
{
*token = GetLayerName();
return true;
}
else if( token->IsSameAs( wxT( "FOOTPRINT_LIBRARY" ) ) )
{
*token = m_fpid.GetUniStringLibNickname();
return true;
}
else if( token->IsSameAs( wxT( "FOOTPRINT_NAME" ) ) )
{
*token = m_fpid.GetUniStringLibItemName();
return true;
}
else if( token->StartsWith( wxT( "SHORT_NET_NAME(" ) )
|| token->StartsWith( wxT( "NET_NAME(" ) )
|| token->StartsWith( wxT( "NET_CLASS(" ) )
|| token->StartsWith( wxT( "PIN_NAME(" ) ) )
{
wxString padNumber = token->AfterFirst( '(' );
padNumber = padNumber.BeforeLast( ')' );
for( PAD* pad : Pads() )
{
if( pad->GetNumber() == padNumber )
{
if( token->StartsWith( wxT( "SHORT_NET_NAME" ) ) )
*token = pad->GetShortNetname();
else if( token->StartsWith( wxT( "NET_NAME" ) ) )
*token = pad->GetNetname();
else if( token->StartsWith( wxT( "NET_CLASS" ) ) )
*token = pad->GetNetClassName();
else
*token = pad->GetPinFunction();
return true;
}
}
}
else if( PCB_FIELD* field = GetField( *token ) )
{
*token = field->GetText();
return true;
}
if( GetBoard() && GetBoard()->ResolveTextVar( token, aDepth + 1 ) )
return true;
return false;
}
void FOOTPRINT::ClearAllNets()
{
// Force the ORPHANED dummy net info for all pads.
// ORPHANED dummy net does not depend on a board
for( PAD* pad : m_pads )
pad->SetNetCode( NETINFO_LIST::ORPHANED );
}
void FOOTPRINT::Add( BOARD_ITEM* aBoardItem, ADD_MODE aMode, bool aSkipConnectivity )
{
switch( aBoardItem->Type() )
{
case PCB_FIELD_T:
m_fields.push_back( static_cast<PCB_FIELD*>( aBoardItem ) );
break;
case PCB_TEXT_T:
case PCB_DIM_ALIGNED_T:
case PCB_DIM_LEADER_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_SHAPE_T:
case PCB_TEXTBOX_T:
case PCB_TABLE_T:
case PCB_REFERENCE_IMAGE_T:
if( aMode == ADD_MODE::APPEND )
m_drawings.push_back( aBoardItem );
else
m_drawings.push_front( aBoardItem );
break;
case PCB_PAD_T:
if( aMode == ADD_MODE::APPEND )
m_pads.push_back( static_cast<PAD*>( aBoardItem ) );
else
m_pads.push_front( static_cast<PAD*>( aBoardItem ) );
break;
case PCB_ZONE_T:
if( aMode == ADD_MODE::APPEND )
m_zones.push_back( static_cast<ZONE*>( aBoardItem ) );
else
m_zones.insert( m_zones.begin(), static_cast<ZONE*>( aBoardItem ) );
break;
case PCB_GROUP_T:
if( aMode == ADD_MODE::APPEND )
m_groups.push_back( static_cast<PCB_GROUP*>( aBoardItem ) );
else
m_groups.insert( m_groups.begin(), static_cast<PCB_GROUP*>( aBoardItem ) );
break;
default:
wxFAIL_MSG( wxString::Format( wxT( "FOOTPRINT::Add(): BOARD_ITEM type (%d) not handled" ),
aBoardItem->Type() ) );
return;
}
aBoardItem->ClearEditFlags();
aBoardItem->SetParent( this );
}
void FOOTPRINT::Remove( BOARD_ITEM* aBoardItem, REMOVE_MODE aMode )
{
switch( aBoardItem->Type() )
{
case PCB_FIELD_T:
for( auto it = m_fields.begin(); it != m_fields.end(); ++it )
{
if( *it == aBoardItem )
{
m_fields.erase( it );
break;
}
}
break;
case PCB_TEXT_T:
case PCB_DIM_ALIGNED_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_LEADER_T:
case PCB_SHAPE_T:
case PCB_TEXTBOX_T:
case PCB_TABLE_T:
case PCB_REFERENCE_IMAGE_T:
for( auto it = m_drawings.begin(); it != m_drawings.end(); ++it )
{
if( *it == aBoardItem )
{
m_drawings.erase( it );
break;
}
}
break;
case PCB_PAD_T:
for( auto it = m_pads.begin(); it != m_pads.end(); ++it )
{
if( *it == static_cast<PAD*>( aBoardItem ) )
{
m_pads.erase( it );
break;
}
}
break;
case PCB_ZONE_T:
for( auto it = m_zones.begin(); it != m_zones.end(); ++it )
{
if( *it == static_cast<ZONE*>( aBoardItem ) )
{
m_zones.erase( it );
break;
}
}
break;
case PCB_GROUP_T:
for( auto it = m_groups.begin(); it != m_groups.end(); ++it )
{
if( *it == static_cast<PCB_GROUP*>( aBoardItem ) )
{
m_groups.erase( it );
break;
}
}
break;
default:
{
wxString msg;
msg.Printf( wxT( "FOOTPRINT::Remove() needs work: BOARD_ITEM type (%d) not handled" ),
aBoardItem->Type() );
wxFAIL_MSG( msg );
}
}
aBoardItem->SetFlags( STRUCT_DELETED );
}
double FOOTPRINT::GetArea( int aPadding ) const
{
BOX2I bbox = GetBoundingBox( false );
double w = std::abs( static_cast<double>( bbox.GetWidth() ) ) + aPadding;
double h = std::abs( static_cast<double>( bbox.GetHeight() ) ) + aPadding;
return w * h;
}
int FOOTPRINT::GetLikelyAttribute() const
{
int smd_count = 0;
int tht_count = 0;
for( PAD* pad : m_pads )
{
switch( pad->GetProperty() )
{
case PAD_PROP::FIDUCIAL_GLBL:
case PAD_PROP::FIDUCIAL_LOCAL:
continue;
case PAD_PROP::HEATSINK:
case PAD_PROP::CASTELLATED:
case PAD_PROP::MECHANICAL:
continue;
case PAD_PROP::NONE:
case PAD_PROP::BGA:
case PAD_PROP::TESTPOINT:
break;
}
switch( pad->GetAttribute() )
{
case PAD_ATTRIB::PTH:
tht_count++;
break;
case PAD_ATTRIB::SMD:
if( pad->IsOnCopperLayer() )
smd_count++;
break;
default:
break;
}
}
// Footprints with plated through-hole pads should usually be marked through hole even if they
// also have SMD because they might not be auto-placed. Exceptions to this might be shielded
if( tht_count > 0 )
return FP_THROUGH_HOLE;
if( smd_count > 0 )
return FP_SMD;
return 0;
}
wxString FOOTPRINT::GetTypeName() const
{
if( ( m_attributes & FP_SMD ) == FP_SMD )
return _( "SMD" );
if( ( m_attributes & FP_THROUGH_HOLE ) == FP_THROUGH_HOLE )
return _( "Through hole" );
return _( "Other" );
}
BOX2I FOOTPRINT::GetFpPadsLocalBbox() const
{
BOX2I bbox;
// We want the bounding box of the footprint pads at rot 0, not flipped
// Create such a image:
FOOTPRINT dummy( *this );
dummy.SetPosition( VECTOR2I( 0, 0 ) );
dummy.SetOrientation( ANGLE_0 );
if( dummy.IsFlipped() )
dummy.Flip( VECTOR2I( 0, 0 ), FLIP_DIRECTION::TOP_BOTTOM );
for( PAD* pad : dummy.Pads() )
bbox.Merge( pad->GetBoundingBox() );
return bbox;
}
bool FOOTPRINT::TextOnly() const
{
for( BOARD_ITEM* item : m_drawings )
{
if( m_privateLayers.test( item->GetLayer() ) )
continue;
if( item->Type() != PCB_FIELD_T && item->Type() != PCB_TEXT_T )
return false;
}
return true;
}
const BOX2I FOOTPRINT::GetBoundingBox() const
{
return GetBoundingBox( true );
}
const BOX2I FOOTPRINT::GetBoundingBox( bool aIncludeText ) const
{
const BOARD* board = GetBoard();
if( board )
{
if( aIncludeText )
{
if( m_boundingBoxCacheTimeStamp >= board->GetTimeStamp() )
return m_cachedBoundingBox;
}
else
{
if( m_textExcludedBBoxCacheTimeStamp >= board->GetTimeStamp() )
return m_cachedTextExcludedBBox;
}
}
std::vector<PCB_TEXT*> texts;
bool isFPEdit = board && board->IsFootprintHolder();
BOX2I bbox( m_pos );
bbox.Inflate( pcbIUScale.mmToIU( 0.25 ) ); // Give a min size to the bbox
// Calculate the footprint side
PCB_LAYER_ID footprintSide = GetSide();
for( BOARD_ITEM* item : m_drawings )
{
if( m_privateLayers.test( item->GetLayer() ) && !isFPEdit )
continue;
// We want the bitmap bounding box just in the footprint editor
// so it will start with the correct initial zoom
if( item->Type() == PCB_REFERENCE_IMAGE_T && !isFPEdit )
continue;
// Handle text separately
if( item->Type() == PCB_TEXT_T )
{
texts.push_back( static_cast<PCB_TEXT*>( item ) );
continue;
}
// If we're not including text then drop annotations as well -- unless, of course, it's
// an unsided footprint -- in which case it's likely to be nothing *but* annotations.
if( !aIncludeText && footprintSide != UNDEFINED_LAYER )
{
if( BaseType( item->Type() ) == PCB_DIMENSION_T )
continue;
if( item->GetLayer() == Cmts_User || item->GetLayer() == Dwgs_User
|| item->GetLayer() == Eco1_User || item->GetLayer() == Eco2_User )
{
continue;
}
}
bbox.Merge( item->GetBoundingBox() );
}
for( PCB_FIELD* field : m_fields )
{
// Reference and value get their own processing
if( field->IsReference() || field->IsValue() )
continue;
texts.push_back( field );
}
for( PAD* pad : m_pads )
bbox.Merge( pad->GetBoundingBox() );
for( ZONE* zone : m_zones )
bbox.Merge( zone->GetBoundingBox() );
bool noDrawItems = ( m_drawings.empty() && m_pads.empty() && m_zones.empty() );
// Groups do not contribute to the rect, only their members
if( aIncludeText || noDrawItems )
{
// Only PCB_TEXT and PCB_FIELD items are independently selectable; PCB_TEXTBOX items go
// in with other graphic items above.
for( PCB_TEXT* text : texts )
{
if( !isFPEdit && m_privateLayers.test( text->GetLayer() ) )
continue;
if( text->Type() == PCB_FIELD_T && !text->IsVisible() )
continue;
bbox.Merge( text->GetBoundingBox() );
}
// This can be further optimized when aIncludeInvisibleText is true, but currently
// leaving this as is until it's determined there is a noticeable speed hit.
bool valueLayerIsVisible = true;
bool refLayerIsVisible = true;
if( board )
{
// The first "&&" conditional handles the user turning layers off as well as layers
// not being present in the current PCB stackup. Values, references, and all
// footprint text can also be turned off via the GAL meta-layers, so the 2nd and
// 3rd "&&" conditionals handle that.
valueLayerIsVisible = board->IsLayerVisible( Value().GetLayer() )
&& board->IsElementVisible( LAYER_FP_VALUES )
&& board->IsElementVisible( LAYER_FP_TEXT );
refLayerIsVisible = board->IsLayerVisible( Reference().GetLayer() )
&& board->IsElementVisible( LAYER_FP_REFERENCES )
&& board->IsElementVisible( LAYER_FP_TEXT );
}
if( ( Value().IsVisible() && valueLayerIsVisible ) || noDrawItems )
{
bbox.Merge( Value().GetBoundingBox() );
}
if( ( Reference().IsVisible() && refLayerIsVisible ) || noDrawItems )
{
bbox.Merge( Reference().GetBoundingBox() );
}
}
if( board )
{
if( aIncludeText || noDrawItems )
{
m_boundingBoxCacheTimeStamp = board->GetTimeStamp();
m_cachedBoundingBox = bbox;
}
else
{
m_textExcludedBBoxCacheTimeStamp = board->GetTimeStamp();
m_cachedTextExcludedBBox = bbox;
}
}
return bbox;
}
const BOX2I FOOTPRINT::GetLayerBoundingBox( const LSET& aLayers ) const
{
std::vector<PCB_TEXT*> texts;
const BOARD* board = GetBoard();
bool isFPEdit = board && board->IsFootprintHolder();
// Start with an uninitialized bounding box
BOX2I bbox;
for( BOARD_ITEM* item : m_drawings )
{
if( m_privateLayers.test( item->GetLayer() ) && !isFPEdit )
continue;
if( ( aLayers & item->GetLayerSet() ).none() )
continue;
// We want the bitmap bounding box just in the footprint editor
// so it will start with the correct initial zoom
if( item->Type() == PCB_REFERENCE_IMAGE_T && !isFPEdit )
continue;
bbox.Merge( item->GetBoundingBox() );
}
for( PAD* pad : m_pads )
{
if( ( aLayers & pad->GetLayerSet() ).none() )
continue;
bbox.Merge( pad->GetBoundingBox() );
}
for( ZONE* zone : m_zones )
{
if( ( aLayers & zone->GetLayerSet() ).none() )
continue;
bbox.Merge( zone->GetBoundingBox() );
}
return bbox;
}
SHAPE_POLY_SET FOOTPRINT::GetBoundingHull() const
{
const BOARD* board = GetBoard();
bool isFPEdit = board && board->IsFootprintHolder();
if( board )
{
if( m_hullCacheTimeStamp >= board->GetTimeStamp() )
return m_cachedHull;
}
SHAPE_POLY_SET rawPolys;
for( BOARD_ITEM* item : m_drawings )
{
if( !isFPEdit && m_privateLayers.test( item->GetLayer() ) )
continue;
if( item->Type() != PCB_FIELD_T && item->Type() != PCB_REFERENCE_IMAGE_T )
{
item->TransformShapeToPolygon( rawPolys, UNDEFINED_LAYER, 0, ARC_LOW_DEF,
ERROR_OUTSIDE );
}
// We intentionally exclude footprint fields from the bounding hull.
}
for( PAD* pad : m_pads )
{
pad->Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
pad->TransformShapeToPolygon( rawPolys, aLayer, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
} );
// In case hole is larger than pad
pad->TransformHoleToPolygon( rawPolys, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
}
for( ZONE* zone : m_zones )
{
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
const SHAPE_POLY_SET& layerPoly = *zone->GetFilledPolysList( layer );
for( int ii = 0; ii < layerPoly.OutlineCount(); ii++ )
{
const SHAPE_LINE_CHAIN& poly = layerPoly.COutline( ii );
rawPolys.AddOutline( poly );
}
}
}
// If there are some graphic items, build the actual hull.
// However if no items, create a minimal polygon (can happen if a footprint
// is created with no item: it contains only 2 texts.
if( rawPolys.OutlineCount() == 0 || rawPolys.FullPointCount() < 3 )
{
// generate a small dummy rectangular outline around the anchor
const int halfsize = pcbIUScale.mmToIU( 1.0 );
rawPolys.NewOutline();
// add a square:
rawPolys.Append( GetPosition().x - halfsize, GetPosition().y - halfsize );
rawPolys.Append( GetPosition().x + halfsize, GetPosition().y - halfsize );
rawPolys.Append( GetPosition().x + halfsize, GetPosition().y + halfsize );
rawPolys.Append( GetPosition().x - halfsize, GetPosition().y + halfsize );
}
std::vector<VECTOR2I> convex_hull;
BuildConvexHull( convex_hull, rawPolys );
m_cachedHull.RemoveAllContours();
m_cachedHull.NewOutline();
for( const VECTOR2I& pt : convex_hull )
m_cachedHull.Append( pt );
if( board )
m_hullCacheTimeStamp = board->GetTimeStamp();
return m_cachedHull;
}
SHAPE_POLY_SET FOOTPRINT::GetBoundingHull( PCB_LAYER_ID aLayer ) const
{
const BOARD* board = GetBoard();
bool isFPEdit = board && board->IsFootprintHolder();
SHAPE_POLY_SET rawPolys;
SHAPE_POLY_SET hull;
for( BOARD_ITEM* item : m_drawings )
{
if( !isFPEdit && m_privateLayers.test( item->GetLayer() ) )
continue;
if( item->IsOnLayer( aLayer ) )
{
if( item->Type() != PCB_FIELD_T && item->Type() != PCB_REFERENCE_IMAGE_T )
{
item->TransformShapeToPolygon( rawPolys, UNDEFINED_LAYER, 0, ARC_LOW_DEF,
ERROR_OUTSIDE );
}
// We intentionally exclude footprint fields from the bounding hull.
}
}
for( PAD* pad : m_pads )
{
if( pad->IsOnLayer( aLayer ) )
pad->TransformShapeToPolygon( rawPolys, aLayer, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
}
for( ZONE* zone : m_zones )
{
if( zone->GetIsRuleArea() )
continue;
if( zone->IsOnLayer( aLayer ) )
{
const std::shared_ptr<SHAPE_POLY_SET>& layerPoly = zone->GetFilledPolysList( aLayer );
for( int ii = 0; ii < layerPoly->OutlineCount(); ii++ )
rawPolys.AddOutline( layerPoly->COutline( ii ) );
}
}
std::vector<VECTOR2I> convex_hull;
BuildConvexHull( convex_hull, rawPolys );
hull.NewOutline();
for( const VECTOR2I& pt : convex_hull )
hull.Append( pt );
return hull;
}
void FOOTPRINT::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg, msg2;
// Don't use GetShownText(); we want to see the variable references here
aList.emplace_back( UnescapeString( Reference().GetText() ),
UnescapeString( Value().GetText() ) );
if( aFrame->IsType( FRAME_FOOTPRINT_VIEWER )
|| aFrame->IsType( FRAME_FOOTPRINT_CHOOSER )
|| aFrame->IsType( FRAME_FOOTPRINT_EDITOR ) )
{
size_t padCount = GetPadCount( DO_NOT_INCLUDE_NPTH );
aList.emplace_back( _( "Library" ), GetFPID().GetLibNickname().wx_str() );
aList.emplace_back( _( "Footprint Name" ), GetFPID().GetLibItemName().wx_str() );
aList.emplace_back( _( "Pads" ), wxString::Format( wxT( "%zu" ), padCount ) );
aList.emplace_back( wxString::Format( _( "Doc: %s" ), GetLibDescription() ),
wxString::Format( _( "Keywords: %s" ), GetKeywords() ) );
return;
}
// aFrame is the board editor:
switch( GetSide() )
{
case F_Cu: aList.emplace_back( _( "Board Side" ), _( "Front" ) ); break;
case B_Cu: aList.emplace_back( _( "Board Side" ), _( "Back (Flipped)" ) ); break;
default: /* unsided: user-layers only, etc. */ break;
}
auto addToken = []( wxString* aStr, const wxString& aAttr )
{
if( !aStr->IsEmpty() )
*aStr += wxT( ", " );
*aStr += aAttr;
};
wxString status;
wxString attrs;
if( IsLocked() )
addToken( &status, _( "Locked" ) );
if( m_fpStatus & FP_is_PLACED )
addToken( &status, _( "autoplaced" ) );
if( m_attributes & FP_BOARD_ONLY )
addToken( &attrs, _( "not in schematic" ) );
if( m_attributes & FP_EXCLUDE_FROM_POS_FILES )
addToken( &attrs, _( "exclude from pos files" ) );
if( m_attributes & FP_EXCLUDE_FROM_BOM )
addToken( &attrs, _( "exclude from BOM" ) );
if( m_attributes & FP_DNP )
addToken( &attrs, _( "DNP" ) );
aList.emplace_back( _( "Status: " ) + status, _( "Attributes:" ) + wxS( " " ) + attrs );
aList.emplace_back( _( "Rotation" ), wxString::Format( wxT( "%.4g" ),
GetOrientation().AsDegrees() ) );
if( !m_componentClassCacheProxy->GetComponentClass()->IsEmpty() )
{
aList.emplace_back(
_( "Component Class" ),
m_componentClassCacheProxy->GetComponentClass()->GetHumanReadableName() );
}
msg.Printf( _( "Footprint: %s" ), m_fpid.GetUniStringLibId() );
msg2.Printf( _( "3D-Shape: %s" ), m_3D_Drawings.empty() ? _( "<none>" )
: m_3D_Drawings.front().m_Filename );
aList.emplace_back( msg, msg2 );
msg.Printf( _( "Doc: %s" ), m_libDescription );
msg2.Printf( _( "Keywords: %s" ), m_keywords );
aList.emplace_back( msg, msg2 );
}
PCB_LAYER_ID FOOTPRINT::GetSide() const
{
if( const BOARD* board = GetBoard() )
{
if( board->IsFootprintHolder() )
return UNDEFINED_LAYER;
}
// Test pads first; they're the most likely to return a quick answer.
for( PAD* pad : m_pads )
{
if( ( LSET::SideSpecificMask() & pad->GetLayerSet() ).any() )
return GetLayer();
}
for( BOARD_ITEM* item : m_drawings )
{
if( LSET::SideSpecificMask().test( item->GetLayer() ) )
return GetLayer();
}
for( ZONE* zone : m_zones )
{
if( ( LSET::SideSpecificMask() & zone->GetLayerSet() ).any() )
return GetLayer();
}
return UNDEFINED_LAYER;
}
bool FOOTPRINT::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
// If we have any pads, fall back on normal checking
for( PAD* pad : m_pads )
{
if( pad->IsOnLayer( aLayer ) )
return true;
}
for( ZONE* zone : m_zones )
{
if( zone->IsOnLayer( aLayer ) )
return true;
}
for( PCB_FIELD* field : m_fields )
{
if( field->IsOnLayer( aLayer ) )
return true;
}
for( BOARD_ITEM* item : m_drawings )
{
if( item->IsOnLayer( aLayer ) )
return true;
}
return false;
}
bool FOOTPRINT::HitTestOnLayer( const VECTOR2I& aPosition, PCB_LAYER_ID aLayer, int aAccuracy ) const
{
for( PAD* pad : m_pads )
{
if( pad->IsOnLayer( aLayer ) && pad->HitTest( aPosition, aAccuracy ) )
return true;
}
for( ZONE* zone : m_zones )
{
if( zone->IsOnLayer( aLayer ) && zone->HitTest( aPosition, aAccuracy ) )
return true;
}
for( BOARD_ITEM* item : m_drawings )
{
if( item->Type() != PCB_TEXT_T && item->IsOnLayer( aLayer )
&& item->HitTest( aPosition, aAccuracy ) )
{
return true;
}
}
return false;
}
bool FOOTPRINT::HitTestOnLayer( const BOX2I& aRect, bool aContained, PCB_LAYER_ID aLayer, int aAccuracy ) const
{
std::vector<BOARD_ITEM*> items;
for( PAD* pad : m_pads )
{
if( pad->IsOnLayer( aLayer ) )
items.push_back( pad );
}
for( ZONE* zone : m_zones )
{
if( zone->IsOnLayer( aLayer ) )
items.push_back( zone );
}
for( BOARD_ITEM* item : m_drawings )
{
if( item->Type() != PCB_TEXT_T && item->IsOnLayer( aLayer ) )
items.push_back( item );
}
// If we require the elements to be contained in the rect and any of them are not,
// we can return false;
// Conversely, if we just require any of the elements to have a hit, we can return true
// when the first one is found.
for( BOARD_ITEM* item : items )
{
if( !aContained && item->HitTest( aRect, aContained, aAccuracy ) )
return true;
else if( aContained && !item->HitTest( aRect, aContained, aAccuracy ) )
return false;
}
// If we didn't exit in the loop, that means that we did not return false for aContained or
// we did not return true for !aContained. So we can just return the bool with a test of
// whether there were any elements or not.
return !items.empty() && aContained;
}
bool FOOTPRINT::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
BOX2I rect = GetBoundingBox( false );
return rect.Inflate( aAccuracy ).Contains( aPosition );
}
bool FOOTPRINT::HitTestAccurate( const VECTOR2I& aPosition, int aAccuracy ) const
{
return GetBoundingHull().Collide( aPosition, aAccuracy );
}
bool FOOTPRINT::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
BOX2I arect = aRect;
arect.Inflate( aAccuracy );
if( aContained )
{
return arect.Contains( GetBoundingBox( false ) );
}
else
{
// If the rect does not intersect the bounding box, skip any tests
if( !aRect.Intersects( GetBoundingBox( false ) ) )
return false;
// If there are no pads, zones, or drawings, allow intersection with text
if( m_pads.empty() && m_zones.empty() && m_drawings.empty() )
return GetBoundingBox( true ).Intersects( arect );
// Determine if any elements in the FOOTPRINT intersect the rect
for( PAD* pad : m_pads )
{
if( pad->HitTest( arect, false, 0 ) )
return true;
}
for( ZONE* zone : m_zones )
{
if( zone->HitTest( arect, false, 0 ) )
return true;
}
// PCB fields are selectable on their own, so they don't get tested
for( BOARD_ITEM* item : m_drawings )
{
// Text items are selectable on their own, and are therefore excluded from this
// test. TextBox items are NOT selectable on their own, and so MUST be included
// here. Bitmaps aren't selectable since they aren't displayed.
if( item->Type() != PCB_TEXT_T && item->HitTest( arect, false, 0 ) )
return true;
}
// Groups are not hit-tested; only their members
// No items were hit
return false;
}
}
PAD* FOOTPRINT::FindPadByNumber( const wxString& aPadNumber, PAD* aSearchAfterMe ) const
{
bool can_select = aSearchAfterMe ? false : true;
for( PAD* pad : m_pads )
{
if( !can_select && pad == aSearchAfterMe )
{
can_select = true;
continue;
}
if( can_select && pad->GetNumber() == aPadNumber )
return pad;
}
return nullptr;
}
PAD* FOOTPRINT::GetPad( const VECTOR2I& aPosition, const LSET& aLayerMask )
{
for( PAD* pad : m_pads )
{
// ... and on the correct layer.
if( !( pad->GetLayerSet() & aLayerMask ).any() )
continue;
if( pad->HitTest( aPosition ) )
return pad;
}
return nullptr;
}
std::vector<const PAD*> FOOTPRINT::GetPads( const wxString& aPadNumber, const PAD* aIgnore ) const
{
std::vector<const PAD*> retv;
for( const PAD* pad : m_pads )
{
if( ( aIgnore && aIgnore == pad ) || ( pad->GetNumber() != aPadNumber ) )
continue;
retv.push_back( pad );
}
return retv;
}
unsigned FOOTPRINT::GetPadCount( INCLUDE_NPTH_T aIncludeNPTH ) const
{
if( aIncludeNPTH )
return m_pads.size();
unsigned cnt = 0;
for( PAD* pad : m_pads )
{
if( pad->GetAttribute() == PAD_ATTRIB::NPTH )
continue;
cnt++;
}
return cnt;
}
std::set<wxString> FOOTPRINT::GetUniquePadNumbers( INCLUDE_NPTH_T aIncludeNPTH ) const
{
std::set<wxString> usedNumbers;
// Create a set of used pad numbers
for( PAD* pad : m_pads )
{
// Skip pads not on copper layers (used to build complex
// solder paste shapes for instance)
if( ( pad->GetLayerSet() & LSET::AllCuMask() ).none() )
continue;
// Skip pads with no name, because they are usually "mechanical"
// pads, not "electrical" pads
if( pad->GetNumber().IsEmpty() )
continue;
if( !aIncludeNPTH )
{
// skip NPTH
if( pad->GetAttribute() == PAD_ATTRIB::NPTH )
continue;
}
usedNumbers.insert( pad->GetNumber() );
}
return usedNumbers;
}
unsigned FOOTPRINT::GetUniquePadCount( INCLUDE_NPTH_T aIncludeNPTH ) const
{
return GetUniquePadNumbers( aIncludeNPTH ).size();
}
void FOOTPRINT::Add3DModel( FP_3DMODEL* a3DModel )
{
if( nullptr == a3DModel )
return;
if( !a3DModel->m_Filename.empty() )
m_3D_Drawings.push_back( *a3DModel );
}
bool FOOTPRINT::Matches( const EDA_SEARCH_DATA& aSearchData, void* aAuxData ) const
{
if( aSearchData.searchMetadata )
{
if( EDA_ITEM::Matches( GetFPIDAsString(), aSearchData ) )
return true;
if( EDA_ITEM::Matches( GetLibDescription(), aSearchData ) )
return true;
if( EDA_ITEM::Matches( GetKeywords(), aSearchData ) )
return true;
}
return false;
}
// see footprint.h
INSPECT_RESULT FOOTPRINT::Visit( INSPECTOR inspector, void* testData,
const std::vector<KICAD_T>& aScanTypes )
{
#if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' ';
#endif
bool drawingsScanned = false;
for( KICAD_T scanType : aScanTypes )
{
switch( scanType )
{
case PCB_FOOTPRINT_T:
if( inspector( this, testData ) == INSPECT_RESULT::QUIT )
return INSPECT_RESULT::QUIT;
break;
case PCB_PAD_T:
if( IterateForward<PAD*>( m_pads, inspector, testData, { scanType } )
== INSPECT_RESULT::QUIT )
{
return INSPECT_RESULT::QUIT;
}
break;
case PCB_ZONE_T:
if( IterateForward<ZONE*>( m_zones, inspector, testData, { scanType } )
== INSPECT_RESULT::QUIT )
{
return INSPECT_RESULT::QUIT;
}
break;
case PCB_FIELD_T:
if( IterateForward<PCB_FIELD*>( m_fields, inspector, testData, { scanType } )
== INSPECT_RESULT::QUIT )
{
return INSPECT_RESULT::QUIT;
}
break;
case PCB_TEXT_T:
case PCB_DIM_ALIGNED_T:
case PCB_DIM_LEADER_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_SHAPE_T:
case PCB_TEXTBOX_T:
case PCB_TABLE_T:
case PCB_TABLECELL_T:
if( !drawingsScanned )
{
if( IterateForward<BOARD_ITEM*>( m_drawings, inspector, testData, aScanTypes )
== INSPECT_RESULT::QUIT )
{
return INSPECT_RESULT::QUIT;
}
drawingsScanned = true;
}
break;
case PCB_GROUP_T:
if( IterateForward<PCB_GROUP*>( m_groups, inspector, testData, { scanType } )
== INSPECT_RESULT::QUIT )
{
return INSPECT_RESULT::QUIT;
}
break;
default:
break;
}
}
return INSPECT_RESULT::CONTINUE;
}
wxString FOOTPRINT::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const
{
wxString reference = GetReference();
if( reference.IsEmpty() )
reference = _( "<no reference designator>" );
return wxString::Format( _( "Footprint %s" ), reference );
}
BITMAPS FOOTPRINT::GetMenuImage() const
{
return BITMAPS::module;
}
EDA_ITEM* FOOTPRINT::Clone() const
{
return new FOOTPRINT( *this );
}
void FOOTPRINT::RunOnChildren( const std::function<void( BOARD_ITEM* )>& aFunction, RECURSE_MODE aMode ) const
{
try
{
for( PCB_FIELD* field : m_fields )
aFunction( field );
for( PAD* pad : m_pads )
aFunction( pad );
for( ZONE* zone : m_zones )
aFunction( zone );
for( PCB_GROUP* group : m_groups )
aFunction( group );
for( BOARD_ITEM* drawing : m_drawings )
{
aFunction( drawing );
if( aMode == RECURSE_MODE::RECURSE )
drawing->RunOnChildren( aFunction, RECURSE_MODE::RECURSE );
}
}
catch( std::bad_function_call& )
{
wxFAIL_MSG( wxT( "Error running FOOTPRINT::RunOnChildren" ) );
}
}
std::vector<int> FOOTPRINT::ViewGetLayers() const
{
std::vector<int> layers;
layers.reserve( 6 );
layers.push_back( LAYER_ANCHOR );
switch( m_layer )
{
default:
wxASSERT_MSG( false, wxT( "Illegal layer" ) ); // do you really have footprints placed
// on other layers?
KI_FALLTHROUGH;
case F_Cu:
layers.push_back( LAYER_FOOTPRINTS_FR );
break;
case B_Cu:
layers.push_back( LAYER_FOOTPRINTS_BK );
break;
}
if( IsConflicting() )
layers.push_back( LAYER_CONFLICTS_SHADOW );
// If there are no pads, and only drawings on a silkscreen layer, then report the silkscreen
// layer as well so that the component can be edited with the silkscreen layer
bool f_silk = false, b_silk = false, non_silk = false;
for( BOARD_ITEM* item : m_drawings )
{
if( item->GetLayer() == F_SilkS )
f_silk = true;
else if( item->GetLayer() == B_SilkS )
b_silk = true;
else
non_silk = true;
}
if( ( f_silk || b_silk ) && !non_silk && m_pads.empty() )
{
if( f_silk )
layers.push_back( F_SilkS );
if( b_silk )
layers.push_back( B_SilkS );
}
return layers;
}
double FOOTPRINT::ViewGetLOD( int aLayer, const KIGFX::VIEW* aView ) const
{
if( aLayer == LAYER_CONFLICTS_SHADOW && IsConflicting() )
{
// The locked shadow shape is shown only if the footprint itself is visible
if( ( m_layer == F_Cu ) && aView->IsLayerVisible( LAYER_FOOTPRINTS_FR ) )
return LOD_SHOW;
if( ( m_layer == B_Cu ) && aView->IsLayerVisible( LAYER_FOOTPRINTS_BK ) )
return LOD_SHOW;
return LOD_HIDE;
}
int layer = ( m_layer == F_Cu ) ? LAYER_FOOTPRINTS_FR :
( m_layer == B_Cu ) ? LAYER_FOOTPRINTS_BK : LAYER_ANCHOR;
// Currently this is only pertinent for the anchor layer; everything else is drawn from the
// children.
// The "good" value is experimentally chosen.
constexpr double MINIMAL_ZOOM_LEVEL_FOR_VISIBILITY = 1.5;
if( aView->IsLayerVisible( layer ) )
return MINIMAL_ZOOM_LEVEL_FOR_VISIBILITY;
return LOD_HIDE;
}
const BOX2I FOOTPRINT::ViewBBox() const
{
BOX2I area = GetBoundingBox( true );
// Inflate in case clearance lines are drawn around pads, etc.
if( const BOARD* board = GetBoard() )
{
int biggest_clearance = board->GetMaxClearanceValue();
area.Inflate( biggest_clearance );
}
return area;
}
bool FOOTPRINT::IsLibNameValid( const wxString & aName )
{
const wxChar * invalids = StringLibNameInvalidChars( false );
if( aName.find_first_of( invalids ) != std::string::npos )
return false;
return true;
}
const wxChar* FOOTPRINT::StringLibNameInvalidChars( bool aUserReadable )
{
// This list of characters is also duplicated in validators.cpp and
// lib_id.cpp
// TODO: Unify forbidden character lists - Warning, invalid filename characters are not the same
// as invalid LIB_ID characters. We will need to separate the FP filenames from FP names before this
// can be unified
static const wxChar invalidChars[] = wxT("%$<>\t\n\r\"\\/:");
static const wxChar invalidCharsReadable[] = wxT("% $ < > 'tab' 'return' 'line feed' \\ \" / :");
if( aUserReadable )
return invalidCharsReadable;
else
return invalidChars;
}
void FOOTPRINT::Move( const VECTOR2I& aMoveVector )
{
if( aMoveVector.x == 0 && aMoveVector.y == 0 )
return;
VECTOR2I newpos = m_pos + aMoveVector;
SetPosition( newpos );
}
void FOOTPRINT::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
if( aAngle == ANGLE_0 )
return;
EDA_ANGLE orientation = GetOrientation();
EDA_ANGLE newOrientation = orientation + aAngle;
VECTOR2I newpos = m_pos;
RotatePoint( newpos, aRotCentre, aAngle );
SetPosition( newpos );
SetOrientation( newOrientation );
for( PCB_FIELD* field : m_fields )
field->KeepUpright();
for( BOARD_ITEM* item : m_drawings )
{
if( item->Type() == PCB_TEXT_T )
static_cast<PCB_TEXT*>( item )->KeepUpright();
}
}
void FOOTPRINT::SetLayerAndFlip( PCB_LAYER_ID aLayer )
{
wxASSERT( aLayer == F_Cu || aLayer == B_Cu );
if( aLayer != GetLayer() )
Flip( GetPosition(), FLIP_DIRECTION::LEFT_RIGHT );
}
void FOOTPRINT::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection )
{
// Move footprint to its final position:
VECTOR2I finalPos = m_pos;
// Now Flip the footprint.
// Flipping a footprint is a specific transform: it is not mirrored like a text.
// We have to change the side, and ensure the footprint rotation is modified according to the
// transform, because this parameter is used in pick and place files, and when updating the
// footprint from library.
// When flipped around the X axis (Y coordinates changed) orientation is negated
// When flipped around the Y axis (X coordinates changed) orientation is 180 - old orient.
// Because it is specific to a footprint, we flip around the X axis, and after rotate 180 deg
MIRROR( finalPos.y, aCentre.y ); /// Mirror the Y position (around the X axis)
SetPosition( finalPos );
// Flip layer
BOARD_ITEM::SetLayer( GetBoard()->FlipLayer( GetLayer() ) );
// Calculate the new orientation, and then clear it for pad flipping.
EDA_ANGLE newOrientation = -m_orient;
newOrientation.Normalize180();
m_orient = ANGLE_0;
// Mirror fields to other side of board.
for( PCB_FIELD* field : m_fields )
field->Flip( m_pos, FLIP_DIRECTION::TOP_BOTTOM );
// Mirror pads to other side of board.
for( PAD* pad : m_pads )
pad->Flip( m_pos, FLIP_DIRECTION::TOP_BOTTOM );
// Now set the new orientation.
m_orient = newOrientation;
// Mirror zones to other side of board.
for( ZONE* zone : m_zones )
zone->Flip( m_pos, FLIP_DIRECTION::TOP_BOTTOM );
// Reverse mirror footprint graphics and texts.
for( BOARD_ITEM* item : m_drawings )
item->Flip( m_pos, FLIP_DIRECTION::TOP_BOTTOM );
// Now rotate 180 deg if required
if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT )
Rotate( aCentre, ANGLE_180 );
m_boundingBoxCacheTimeStamp = 0;
m_textExcludedBBoxCacheTimeStamp = 0;
m_cachedHull.Mirror( m_pos, aFlipDirection );
// The courtyard caches must be rebuilt after geometry change
BuildCourtyardCaches();
}
void FOOTPRINT::SetPosition( const VECTOR2I& aPos )
{
VECTOR2I delta = aPos - m_pos;
m_pos += delta;
for( PCB_FIELD* field : m_fields )
field->EDA_TEXT::Offset( delta );
for( PAD* pad : m_pads )
pad->SetPosition( pad->GetPosition() + delta );
for( ZONE* zone : m_zones )
zone->Move( delta );
for( BOARD_ITEM* item : m_drawings )
item->Move( delta );
m_cachedBoundingBox.Move( delta );
m_cachedTextExcludedBBox.Move( delta );
m_cachedHull.Move( delta );
// The geometry work has been conserved by using Move(). But the hashes
// need to be updated, otherwise the cached polygons will still be rebuild.
m_courtyard_cache_back.Move( delta );
m_courtyard_cache_back_hash = m_courtyard_cache_back.GetHash();
m_courtyard_cache_front.Move( delta );
m_courtyard_cache_front_hash = m_courtyard_cache_front.GetHash();
}
void FOOTPRINT::MoveAnchorPosition( const VECTOR2I& aMoveVector )
{
/*
* Move the reference point of the footprint
* the footprints elements (pads, outlines, edges .. ) are moved
* but:
* - the footprint position is not modified.
* - the relative (local) coordinates of these items are modified
* - Draw coordinates are updated
*/
// Update (move) the relative coordinates relative to the new anchor point.
VECTOR2I moveVector = aMoveVector;
RotatePoint( moveVector, -GetOrientation() );
// Update field local coordinates
for( PCB_FIELD* field : m_fields )
field->Move( moveVector );
// Update the pad local coordinates.
for( PAD* pad : m_pads )
pad->Move( moveVector );
// Update the draw element coordinates.
for( BOARD_ITEM* item : GraphicalItems() )
item->Move( moveVector );
// Update the keepout zones
for( ZONE* zone : Zones() )
zone->Move( moveVector );
// Update the 3D models
for( FP_3DMODEL& model : Models() )
{
model.m_Offset.x += pcbIUScale.IUTomm( moveVector.x );
model.m_Offset.y -= pcbIUScale.IUTomm( moveVector.y );
}
m_cachedBoundingBox.Move( moveVector );
m_cachedTextExcludedBBox.Move( moveVector );
m_cachedHull.Move( moveVector );
// The geometry work have been conserved by using Move(). But the hashes
// need to be updated, otherwise the cached polygons will still be rebuild.
m_courtyard_cache_back.Move( moveVector );
m_courtyard_cache_back_hash = m_courtyard_cache_back.GetHash();
m_courtyard_cache_front.Move( moveVector );
m_courtyard_cache_front_hash = m_courtyard_cache_front.GetHash();
}
void FOOTPRINT::SetOrientation( const EDA_ANGLE& aNewAngle )
{
EDA_ANGLE angleChange = aNewAngle - m_orient; // change in rotation
m_orient = aNewAngle;
m_orient.Normalize180();
for( PCB_FIELD* field : m_fields )
field->Rotate( GetPosition(), angleChange );
for( PAD* pad : m_pads )
pad->Rotate( GetPosition(), angleChange );
for( ZONE* zone : m_zones )
zone->Rotate( GetPosition(), angleChange );
for( BOARD_ITEM* item : m_drawings )
item->Rotate( GetPosition(), angleChange );
m_boundingBoxCacheTimeStamp = 0;
m_textExcludedBBoxCacheTimeStamp = 0;
m_hullCacheTimeStamp = 0;
// The courtyard caches need to be rebuilt, as the geometry has changed
BuildCourtyardCaches();
}
BOARD_ITEM* FOOTPRINT::Duplicate( bool addToParentGroup, BOARD_COMMIT* aCommit ) const
{
FOOTPRINT* dupe = static_cast<FOOTPRINT*>( BOARD_ITEM::Duplicate( addToParentGroup, aCommit ) );
dupe->RunOnChildren( [&]( BOARD_ITEM* child )
{
const_cast<KIID&>( child->m_Uuid ) = KIID();
},
RECURSE_MODE::RECURSE );
return dupe;
}
BOARD_ITEM* FOOTPRINT::DuplicateItem( bool addToParentGroup, BOARD_COMMIT* aCommit,
const BOARD_ITEM* aItem, bool addToFootprint )
{
BOARD_ITEM* new_item = nullptr;
switch( aItem->Type() )
{
case PCB_PAD_T:
{
PAD* new_pad = new PAD( *static_cast<const PAD*>( aItem ) );
const_cast<KIID&>( new_pad->m_Uuid ) = KIID();
if( addToFootprint )
m_pads.push_back( new_pad );
new_item = new_pad;
break;
}
case PCB_ZONE_T:
{
ZONE* new_zone = new ZONE( *static_cast<const ZONE*>( aItem ) );
const_cast<KIID&>( new_zone->m_Uuid ) = KIID();
if( addToFootprint )
m_zones.push_back( new_zone );
new_item = new_zone;
break;
}
case PCB_FIELD_T:
case PCB_TEXT_T:
{
PCB_TEXT* new_text = new PCB_TEXT( *static_cast<const PCB_TEXT*>( aItem ) );
const_cast<KIID&>( new_text->m_Uuid ) = KIID();
if( aItem->Type() == PCB_FIELD_T )
{
switch( static_cast<const PCB_FIELD*>( aItem )->GetId() )
{
case FIELD_T::REFERENCE: new_text->SetText( wxT( "${REFERENCE}" ) ); break;
case FIELD_T::VALUE: new_text->SetText( wxT( "${VALUE}" ) ); break;
case FIELD_T::DATASHEET: new_text->SetText( wxT( "${DATASHEET}" ) ); break;
default: break;
}
}
if( addToFootprint )
Add( new_text );
new_item = new_text;
break;
}
case PCB_SHAPE_T:
{
PCB_SHAPE* new_shape = new PCB_SHAPE( *static_cast<const PCB_SHAPE*>( aItem ) );
const_cast<KIID&>( new_shape->m_Uuid ) = KIID();
if( addToFootprint )
Add( new_shape );
new_item = new_shape;
break;
}
case PCB_TEXTBOX_T:
{
PCB_TEXTBOX* new_textbox = new PCB_TEXTBOX( *static_cast<const PCB_TEXTBOX*>( aItem ) );
const_cast<KIID&>( new_textbox->m_Uuid ) = KIID();
if( addToFootprint )
Add( new_textbox );
new_item = new_textbox;
break;
}
case PCB_DIM_ALIGNED_T:
case PCB_DIM_LEADER_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
{
PCB_DIMENSION_BASE* dimension = static_cast<PCB_DIMENSION_BASE*>( aItem->Duplicate( addToParentGroup,
aCommit ) );
if( addToFootprint )
Add( dimension );
new_item = dimension;
break;
}
case PCB_GROUP_T:
{
PCB_GROUP* group = static_cast<const PCB_GROUP*>( aItem )->DeepDuplicate( addToParentGroup, aCommit );
if( addToFootprint )
{
group->RunOnChildren(
[&]( BOARD_ITEM* aCurrItem )
{
Add( aCurrItem );
},
RECURSE_MODE::RECURSE );
Add( group );
}
new_item = group;
break;
}
case PCB_FOOTPRINT_T:
// Ignore the footprint itself
break;
default:
// Un-handled item for duplication
wxFAIL_MSG( wxT( "Duplication not supported for items of class " ) + aItem->GetClass() );
break;
}
return new_item;
}
wxString FOOTPRINT::GetNextPadNumber( const wxString& aLastPadNumber ) const
{
std::set<wxString> usedNumbers;
// Create a set of used pad numbers
for( PAD* pad : m_pads )
usedNumbers.insert( pad->GetNumber() );
// Pad numbers aren't technically reference designators, but the formatting is close enough
// for these to give us what we need.
wxString prefix = UTIL::GetRefDesPrefix( aLastPadNumber );
int num = GetTrailingInt( aLastPadNumber );
while( usedNumbers.count( wxString::Format( wxT( "%s%d" ), prefix, num ) ) )
num++;
return wxString::Format( wxT( "%s%d" ), prefix, num );
}
std::optional<const std::set<wxString>> FOOTPRINT::GetJumperPadGroup( const wxString& aPadNumber ) const
{
for( const std::set<wxString>& group : m_jumperPadGroups )
{
if( group.contains( aPadNumber ) )
return group;
}
return std::nullopt;
}
void FOOTPRINT::AutoPositionFields()
{
// Auto-position reference and value
BOX2I bbox = GetBoundingBox( false );
bbox.Inflate( pcbIUScale.mmToIU( 0.2 ) ); // Gap between graphics and text
if( Reference().GetPosition() == VECTOR2I( 0, 0 ) )
{
Reference().SetHorizJustify( GR_TEXT_H_ALIGN_CENTER );
Reference().SetVertJustify( GR_TEXT_V_ALIGN_CENTER );
Reference().SetTextAngle( ANGLE_0 );
Reference().SetX( bbox.GetCenter().x );
Reference().SetY( bbox.GetTop() - Reference().GetTextSize().y / 2 );
}
if( Value().GetPosition() == VECTOR2I( 0, 0 ) )
{
Value().SetHorizJustify( GR_TEXT_H_ALIGN_CENTER );
Value().SetVertJustify( GR_TEXT_V_ALIGN_CENTER );
Value().SetTextAngle( ANGLE_0 );
Value().SetX( bbox.GetCenter().x );
Value().SetY( bbox.GetBottom() + Value().GetTextSize().y / 2 );
}
}
void FOOTPRINT::IncrementReference( int aDelta )
{
const wxString& refdes = GetReference();
SetReference( wxString::Format( wxT( "%s%i" ),
UTIL::GetRefDesPrefix( refdes ),
GetTrailingInt( refdes ) + aDelta ) );
}
// Calculate the area of a PolySet, polygons with hole are allowed.
static double polygonArea( SHAPE_POLY_SET& aPolySet )
{
// Ensure all outlines are closed, before calculating the SHAPE_POLY_SET area
for( int ii = 0; ii < aPolySet.OutlineCount(); ii++ )
{
SHAPE_LINE_CHAIN& outline = aPolySet.Outline( ii );
outline.SetClosed( true );
for( int jj = 0; jj < aPolySet.HoleCount( ii ); jj++ )
aPolySet.Hole( ii, jj ).SetClosed( true );
}
return aPolySet.Area();
}
double FOOTPRINT::GetCoverageArea( const BOARD_ITEM* aItem, const GENERAL_COLLECTOR& aCollector )
{
int textMargin = aCollector.GetGuide()->Accuracy();
SHAPE_POLY_SET poly;
if( aItem->Type() == PCB_MARKER_T )
{
const PCB_MARKER* marker = static_cast<const PCB_MARKER*>( aItem );
SHAPE_LINE_CHAIN markerShape;
marker->ShapeToPolygon( markerShape );
return markerShape.Area();
}
else if( aItem->Type() == PCB_GROUP_T || aItem->Type() == PCB_GENERATOR_T )
{
double combinedArea = 0.0;
for( BOARD_ITEM* member : static_cast<const PCB_GROUP*>( aItem )->GetBoardItems() )
combinedArea += GetCoverageArea( member, aCollector );
return combinedArea;
}
if( aItem->Type() == PCB_FOOTPRINT_T )
{
const FOOTPRINT* footprint = static_cast<const FOOTPRINT*>( aItem );
poly = footprint->GetBoundingHull();
}
else if( aItem->Type() == PCB_FIELD_T || aItem->Type() == PCB_TEXT_T )
{
const PCB_TEXT* text = static_cast<const PCB_TEXT*>( aItem );
text->TransformTextToPolySet( poly, textMargin, ARC_LOW_DEF, ERROR_INSIDE );
}
else if( aItem->Type() == PCB_TEXTBOX_T )
{
const PCB_TEXTBOX* tb = static_cast<const PCB_TEXTBOX*>( aItem );
tb->TransformTextToPolySet( poly, textMargin, ARC_LOW_DEF, ERROR_INSIDE );
}
else if( aItem->Type() == PCB_SHAPE_T )
{
// Approximate "linear" shapes with just their width squared, as we don't want to consider
// a linear shape as being much bigger than another for purposes of selection filtering
// just because it happens to be really long.
const PCB_SHAPE* shape = static_cast<const PCB_SHAPE*>( aItem );
switch( shape->GetShape() )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::ARC:
case SHAPE_T::BEZIER:
return shape->GetWidth() * shape->GetWidth();
case SHAPE_T::RECTANGLE:
case SHAPE_T::CIRCLE:
case SHAPE_T::POLY:
{
if( !shape->IsAnyFill() )
return shape->GetWidth() * shape->GetWidth();
KI_FALLTHROUGH;
}
default:
shape->TransformShapeToPolygon( poly, UNDEFINED_LAYER, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
}
}
else if( aItem->Type() == PCB_TRACE_T || aItem->Type() == PCB_ARC_T )
{
double width = static_cast<const PCB_TRACK*>( aItem )->GetWidth();
return width * width;
}
else if( aItem->Type() == PCB_PAD_T )
{
static_cast<const PAD*>( aItem )->Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
SHAPE_POLY_SET padPoly;
aItem->TransformShapeToPolygon( padPoly, aLayer, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
poly.BooleanAdd( padPoly );
} );
}
else
{
aItem->TransformShapeToPolygon( poly, UNDEFINED_LAYER, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
}
return polygonArea( poly );
}
double FOOTPRINT::CoverageRatio( const GENERAL_COLLECTOR& aCollector ) const
{
int textMargin = aCollector.GetGuide()->Accuracy();
SHAPE_POLY_SET footprintRegion( GetBoundingHull() );
SHAPE_POLY_SET coveredRegion;
TransformPadsToPolySet( coveredRegion, UNDEFINED_LAYER, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
TransformFPShapesToPolySet( coveredRegion, UNDEFINED_LAYER, textMargin, ARC_LOW_DEF,
ERROR_OUTSIDE,
true, /* include text */
false, /* include shapes */
false /* include private items */ );
for( int i = 0; i < aCollector.GetCount(); ++i )
{
const BOARD_ITEM* item = aCollector[i];
switch( item->Type() )
{
case PCB_FIELD_T:
case PCB_TEXT_T:
case PCB_TEXTBOX_T:
case PCB_SHAPE_T:
case PCB_TRACE_T:
case PCB_ARC_T:
case PCB_VIA_T:
if( item->GetParent() != this )
{
item->TransformShapeToPolygon( coveredRegion, UNDEFINED_LAYER, 0, ARC_LOW_DEF,
ERROR_OUTSIDE );
}
break;
case PCB_FOOTPRINT_T:
if( item != this )
{
const FOOTPRINT* footprint = static_cast<const FOOTPRINT*>( item );
coveredRegion.AddOutline( footprint->GetBoundingHull().Outline( 0 ) );
}
break;
default:
break;
}
}
coveredRegion.BooleanIntersection( footprintRegion );
double footprintRegionArea = polygonArea( footprintRegion );
double uncoveredRegionArea = footprintRegionArea - polygonArea( coveredRegion );
double coveredArea = footprintRegionArea - uncoveredRegionArea;
double ratio = ( coveredArea / footprintRegionArea );
// Test for negative ratio (should not occur).
// better to be conservative (this will result in the disambiguate dialog)
if( ratio < 0.0 )
return 1.0;
return std::min( ratio, 1.0 );
}
std::shared_ptr<SHAPE> FOOTPRINT::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const
{
std::shared_ptr<SHAPE_COMPOUND> shape = std::make_shared<SHAPE_COMPOUND>();
// There are several possible interpretations here:
// 1) the bounding box (without or without invisible items)
// 2) just the pads and "edges" (ie: non-text graphic items)
// 3) the courtyard
// We'll go with (2) for now, unless the caller is clearly looking for (3)
if( aLayer == F_CrtYd || aLayer == B_CrtYd )
{
const SHAPE_POLY_SET& courtyard = GetCourtyard( aLayer );
if( courtyard.OutlineCount() == 0 ) // malformed/empty polygon
return shape;
shape->AddShape( new SHAPE_SIMPLE( courtyard.COutline( 0 ) ) );
}
else
{
for( PAD* pad : Pads() )
shape->AddShape( pad->GetEffectiveShape( aLayer, aFlash )->Clone() );
for( BOARD_ITEM* item : GraphicalItems() )
{
if( item->Type() == PCB_SHAPE_T )
shape->AddShape( item->GetEffectiveShape( aLayer, aFlash )->Clone() );
}
}
return shape;
}
const SHAPE_POLY_SET& FOOTPRINT::GetCourtyard( PCB_LAYER_ID aLayer ) const
{
std::lock_guard<std::mutex> lock( m_courtyard_cache_mutex );
if( m_courtyard_cache_front_hash != m_courtyard_cache_front.GetHash()
|| m_courtyard_cache_back_hash != m_courtyard_cache_back.GetHash() )
{
const_cast<FOOTPRINT*>(this)->BuildCourtyardCaches();
}
return GetCachedCourtyard( aLayer );
}
const SHAPE_POLY_SET& FOOTPRINT::GetCachedCourtyard( PCB_LAYER_ID aLayer ) const
{
if( IsBackLayer( aLayer ) )
return m_courtyard_cache_back;
else
return m_courtyard_cache_front;
}
void FOOTPRINT::BuildCourtyardCaches( OUTLINE_ERROR_HANDLER* aErrorHandler )
{
m_courtyard_cache_front.RemoveAllContours();
m_courtyard_cache_back.RemoveAllContours();
ClearFlags( MALFORMED_COURTYARDS );
// Build the courtyard area from graphic items on the courtyard.
// Only PCB_SHAPE_T have meaning, graphic texts are ignored.
// Collect items:
std::vector<PCB_SHAPE*> list_front;
std::vector<PCB_SHAPE*> list_back;
std::map<int, int> front_width_histogram;
std::map<int, int> back_width_histogram;
for( BOARD_ITEM* item : GraphicalItems() )
{
if( item->GetLayer() == B_CrtYd && item->Type() == PCB_SHAPE_T )
{
PCB_SHAPE* shape = static_cast<PCB_SHAPE*>( item );
list_back.push_back( shape );
back_width_histogram[ shape->GetStroke().GetWidth() ]++;
}
if( item->GetLayer() == F_CrtYd && item->Type() == PCB_SHAPE_T )
{
PCB_SHAPE* shape = static_cast<PCB_SHAPE*>( item );
list_front.push_back( shape );
front_width_histogram[ shape->GetStroke().GetWidth() ]++;
}
}
if( !list_front.size() && !list_back.size() )
return;
int maxError = pcbIUScale.mmToIU( 0.005 ); // max error for polygonization
int chainingEpsilon = pcbIUScale.mmToIU( 0.02 ); // max dist from one endPt to next startPt
if( ConvertOutlineToPolygon( list_front, m_courtyard_cache_front, maxError, chainingEpsilon,
true, aErrorHandler ) )
{
int width = 0;
// Touching courtyards, or courtyards -at- the clearance distance are legal.
// Use maxError here because that is the allowed deviation when transforming arcs/circles to
// polygons.
m_courtyard_cache_front.Inflate( -maxError, CORNER_STRATEGY::CHAMFER_ACUTE_CORNERS, maxError );
m_courtyard_cache_front.CacheTriangulation( false );
auto max = std::max_element( front_width_histogram.begin(), front_width_histogram.end(),
[]( const std::pair<int, int>& a, const std::pair<int, int>& b )
{
return a.second < b.second;
} );
if( max != front_width_histogram.end() )
width = max->first;
if( width == 0 )
width = pcbIUScale.mmToIU( DEFAULT_COURTYARD_WIDTH );
if( m_courtyard_cache_front.OutlineCount() > 0 )
m_courtyard_cache_front.Outline( 0 ).SetWidth( width );
}
else
{
SetFlags( MALFORMED_F_COURTYARD );
}
if( ConvertOutlineToPolygon( list_back, m_courtyard_cache_back, maxError, chainingEpsilon, true,
aErrorHandler ) )
{
int width = 0;
// Touching courtyards, or courtyards -at- the clearance distance are legal.
m_courtyard_cache_back.Inflate( -maxError, CORNER_STRATEGY::CHAMFER_ACUTE_CORNERS, maxError );
m_courtyard_cache_back.CacheTriangulation( false );
auto max = std::max_element( back_width_histogram.begin(), back_width_histogram.end(),
[]( const std::pair<int, int>& a, const std::pair<int, int>& b )
{
return a.second < b.second;
} );
if( max != back_width_histogram.end() )
width = max->first;
if( width == 0 )
width = pcbIUScale.mmToIU( DEFAULT_COURTYARD_WIDTH );
if( m_courtyard_cache_back.OutlineCount() > 0 )
m_courtyard_cache_back.Outline( 0 ).SetWidth( width );
}
else
{
SetFlags( MALFORMED_B_COURTYARD );
}
m_courtyard_cache_front_hash = m_courtyard_cache_front.GetHash();
m_courtyard_cache_back_hash = m_courtyard_cache_back.GetHash();
}
void FOOTPRINT::BuildNetTieCache()
{
m_netTieCache.clear();
std::map<wxString, int> map = MapPadNumbersToNetTieGroups();
std::map<PCB_LAYER_ID, std::vector<PCB_SHAPE*>> layer_shapes;
std::for_each( m_drawings.begin(), m_drawings.end(),
[&]( BOARD_ITEM* item )
{
if( item->Type() != PCB_SHAPE_T )
return;
for( PCB_LAYER_ID layer : item->GetLayerSet() )
layer_shapes[layer].push_back( static_cast<PCB_SHAPE*>( item ) );
} );
for( size_t ii = 0; ii < m_pads.size(); ++ii )
{
PAD* pad = m_pads[ ii ];
bool has_nettie = false;
auto it = map.find( pad->GetNumber() );
if( it == map.end() || it->second < 0 )
continue;
for( size_t jj = ii + 1; jj < m_pads.size(); ++jj )
{
PAD* other = m_pads[ jj ];
auto it2 = map.find( other->GetNumber() );
if( it2 == map.end() || it2->second < 0 )
continue;
if( it2->second == it->second )
{
m_netTieCache[pad].insert( pad->GetNetCode() );
m_netTieCache[pad].insert( other->GetNetCode() );
m_netTieCache[other].insert( other->GetNetCode() );
m_netTieCache[other].insert( pad->GetNetCode() );
has_nettie = true;
}
}
if( !has_nettie )
continue;
for( auto& [ layer, shapes ] : layer_shapes )
{
auto pad_shape = pad->GetEffectiveShape( layer );
for( auto other_shape : shapes )
{
auto shape = other_shape->GetEffectiveShape( layer );
if( pad_shape->Collide( shape.get() ) )
{
std::set<int>& nettie = m_netTieCache[pad];
m_netTieCache[other_shape].insert( nettie.begin(), nettie.end() );
}
}
}
}
}
std::map<wxString, int> FOOTPRINT::MapPadNumbersToNetTieGroups() const
{
std::map<wxString, int> padNumberToGroupIdxMap;
for( const PAD* pad : m_pads )
padNumberToGroupIdxMap[ pad->GetNumber() ] = -1;
auto processPad =
[&]( wxString aPad, int aGroup )
{
aPad.Trim( true ).Trim( false );
if( !aPad.IsEmpty() )
padNumberToGroupIdxMap[ aPad ] = aGroup;
};
for( int ii = 0; ii < (int) m_netTiePadGroups.size(); ++ii )
{
wxString group( m_netTiePadGroups[ ii ] );
bool esc = false;
wxString pad;
for( wxUniCharRef ch : group )
{
if( esc )
{
esc = false;
pad.Append( ch );
continue;
}
switch( static_cast<unsigned char>( ch ) )
{
case '\\':
esc = true;
break;
case ',':
processPad( pad, ii );
pad.Clear();
break;
default:
pad.Append( ch );
break;
}
}
processPad( pad, ii );
}
return padNumberToGroupIdxMap;
}
std::vector<PAD*> FOOTPRINT::GetNetTiePads( PAD* aPad ) const
{
// First build a map from pad numbers to allowed-shorting-group indexes. This ends up being
// something like O(3n), but it still beats O(n^2) for large numbers of pads.
std::map<wxString, int> padToNetTieGroupMap = MapPadNumbersToNetTieGroups();
int groupIdx = padToNetTieGroupMap[ aPad->GetNumber() ];
std::vector<PAD*> otherPads;
if( groupIdx >= 0 )
{
for( PAD* pad : m_pads )
{
if( padToNetTieGroupMap[ pad->GetNumber() ] == groupIdx )
otherPads.push_back( pad );
}
}
return otherPads;
}
void FOOTPRINT::CheckFootprintAttributes( const std::function<void( const wxString& )>& aErrorHandler )
{
int likelyAttr = ( GetLikelyAttribute() & ( FP_SMD | FP_THROUGH_HOLE ) );
int setAttr = ( GetAttributes() & ( FP_SMD | FP_THROUGH_HOLE ) );
if( setAttr && likelyAttr && setAttr != likelyAttr )
{
wxString msg;
switch( likelyAttr )
{
case FP_THROUGH_HOLE:
msg.Printf( _( "(expected 'Through hole'; actual '%s')" ), GetTypeName() );
break;
case FP_SMD:
msg.Printf( _( "(expected 'SMD'; actual '%s')" ), GetTypeName() );
break;
}
if( aErrorHandler )
(aErrorHandler)( msg );
}
}
void FOOTPRINT::CheckPads( UNITS_PROVIDER* aUnitsProvider,
const std::function<void( const PAD*, int,
const wxString& )>& aErrorHandler )
{
if( aErrorHandler == nullptr )
return;
for( PAD* pad: Pads() )
{
pad->CheckPad( aUnitsProvider, false,
[&]( int errorCode, const wxString& msg )
{
aErrorHandler( pad, errorCode, msg );
} );
}
}
void FOOTPRINT::CheckShortingPads( const std::function<void( const PAD*, const PAD*,
int aErrorCode,
const VECTOR2I& )>& aErrorHandler )
{
std::unordered_map<PTR_PTR_CACHE_KEY, int> checkedPairs;
for( PAD* pad : Pads() )
{
std::vector<PAD*> netTiePads = GetNetTiePads( pad );
for( PAD* other : Pads() )
{
if( other == pad )
continue;
// store canonical order so we don't collide in both directions (a:b and b:a)
PAD* a = pad;
PAD* b = other;
if( static_cast<void*>( a ) > static_cast<void*>( b ) )
std::swap( a, b );
if( checkedPairs.find( { a, b } ) == checkedPairs.end() )
{
checkedPairs[ { a, b } ] = 1;
if( pad->HasDrilledHole() && other->HasDrilledHole() )
{
VECTOR2I pos = pad->GetPosition();
if( pad->GetPosition() == other->GetPosition() )
{
aErrorHandler( pad, other, DRCE_DRILLED_HOLES_COLOCATED, pos );
}
else
{
std::shared_ptr<SHAPE_SEGMENT> holeA = pad->GetEffectiveHoleShape();
std::shared_ptr<SHAPE_SEGMENT> holeB = other->GetEffectiveHoleShape();
if( holeA->Collide( holeB->GetSeg(), 0 ) )
aErrorHandler( pad, other, DRCE_DRILLED_HOLES_TOO_CLOSE, pos );
}
}
if( pad->SameLogicalPadAs( other ) || alg::contains( netTiePads, other ) )
continue;
if( !( ( pad->GetLayerSet() & other->GetLayerSet() ) & LSET::AllCuMask() ).any() )
continue;
if( pad->GetBoundingBox().Intersects( other->GetBoundingBox() ) )
{
VECTOR2I pos;
for( PCB_LAYER_ID l : pad->Padstack().RelevantShapeLayers( other->Padstack() ) )
{
SHAPE* padShape = pad->GetEffectiveShape( l ).get();
SHAPE* otherShape = other->GetEffectiveShape( l ).get();
if( padShape->Collide( otherShape, 0, nullptr, &pos ) )
aErrorHandler( pad, other, DRCE_SHORTING_ITEMS, pos );
}
}
}
}
}
}
void FOOTPRINT::CheckNetTies( const std::function<void( const BOARD_ITEM* aItem,
const BOARD_ITEM* bItem,
const BOARD_ITEM* cItem,
const VECTOR2I& )>& aErrorHandler )
{
// First build a map from pad numbers to allowed-shorting-group indexes. This ends up being
// something like O(3n), but it still beats O(n^2) for large numbers of pads.
std::map<wxString, int> padNumberToGroupIdxMap = MapPadNumbersToNetTieGroups();
// Now collect all the footprint items which are on copper layers
std::vector<BOARD_ITEM*> copperItems;
for( BOARD_ITEM* item : m_drawings )
{
if( item->IsOnCopperLayer() )
copperItems.push_back( item );
item->RunOnChildren(
[&]( BOARD_ITEM* descendent )
{
if( descendent->IsOnCopperLayer() )
copperItems.push_back( descendent );
},
RECURSE_MODE::RECURSE );
}
for( ZONE* zone : m_zones )
{
if( !zone->GetIsRuleArea() && zone->IsOnCopperLayer() )
copperItems.push_back( zone );
}
for( PCB_FIELD* field : m_fields )
{
if( field->IsOnCopperLayer() )
copperItems.push_back( field );
}
for( PCB_LAYER_ID layer : { F_Cu, In1_Cu, B_Cu } )
{
// Next, build a polygon-set for the copper on this layer. We don't really care about
// nets here, we just want to end up with a set of outlines describing the distinct
// copper polygons of the footprint.
SHAPE_POLY_SET copperOutlines;
std::map<int, std::vector<const PAD*>> outlineIdxToPadsMap;
for( BOARD_ITEM* item : copperItems )
{
if( item->IsOnLayer( layer ) )
{
item->TransformShapeToPolygon( copperOutlines, layer, 0, ARC_HIGH_DEF,
ERROR_OUTSIDE );
}
}
copperOutlines.Simplify();
// Index each pad to the outline in the set that it is part of.
for( const PAD* pad : m_pads )
{
for( int ii = 0; ii < copperOutlines.OutlineCount(); ++ii )
{
if( pad->GetEffectiveShape( layer )->Collide( &copperOutlines.Outline( ii ), 0 ) )
outlineIdxToPadsMap[ ii ].emplace_back( pad );
}
}
// Finally, ensure that each outline which contains multiple pads has all its pads
// listed in an allowed-shorting group.
for( const auto& [ outlineIdx, pads ] : outlineIdxToPadsMap )
{
if( pads.size() > 1 )
{
const PAD* firstPad = pads[0];
int firstGroupIdx = padNumberToGroupIdxMap[ firstPad->GetNumber() ];
for( size_t ii = 1; ii < pads.size(); ++ii )
{
const PAD* thisPad = pads[ii];
int thisGroupIdx = padNumberToGroupIdxMap[ thisPad->GetNumber() ];
if( thisGroupIdx < 0 || thisGroupIdx != firstGroupIdx )
{
BOARD_ITEM* shortingItem = nullptr;
VECTOR2I pos = ( firstPad->GetPosition() + thisPad->GetPosition() ) / 2;
pos = copperOutlines.Outline( outlineIdx ).NearestPoint( pos );
for( BOARD_ITEM* item : copperItems )
{
if( item->HitTest( pos, 1 ) )
{
shortingItem = item;
break;
}
}
if( shortingItem )
aErrorHandler( shortingItem, firstPad, thisPad, pos );
else
aErrorHandler( firstPad, thisPad, nullptr, pos );
}
}
}
}
}
}
void FOOTPRINT::CheckNetTiePadGroups( const std::function<void( const wxString& )>& aErrorHandler )
{
std::set<wxString> padNumbers;
wxString msg;
for( const auto& [ padNumber, _ ] : MapPadNumbersToNetTieGroups() )
{
const PAD* pad = FindPadByNumber( padNumber );
if( !pad )
{
msg.Printf( _( "(net-tie pad group contains unknown pad number %s)" ), padNumber );
aErrorHandler( msg );
}
else if( !padNumbers.insert( pad->GetNumber() ).second )
{
msg.Printf( _( "(pad %s appears in more than one net-tie pad group)" ), padNumber );
aErrorHandler( msg );
}
}
}
void FOOTPRINT::CheckClippedSilk( const std::function<void( BOARD_ITEM* aItemA,
BOARD_ITEM* aItemB,
const VECTOR2I& aPt )>& aErrorHandler )
{
auto checkColliding =
[&]( BOARD_ITEM* item, BOARD_ITEM* other )
{
for( PCB_LAYER_ID silk : { F_SilkS, B_SilkS } )
{
PCB_LAYER_ID mask = silk == F_SilkS ? F_Mask : B_Mask;
if( !item->IsOnLayer( silk ) || !other->IsOnLayer( mask ) )
continue;
std::shared_ptr<SHAPE> itemShape = item->GetEffectiveShape( silk );
std::shared_ptr<SHAPE> otherShape = other->GetEffectiveShape( mask );
int actual;
VECTOR2I pos;
if( itemShape->Collide( otherShape.get(), 0, &actual, &pos ) )
aErrorHandler( item, other, pos );
}
};
for( BOARD_ITEM* item : m_drawings )
{
for( BOARD_ITEM* other : m_drawings )
{
if( other != item )
checkColliding( item, other );
}
for( PAD* pad : m_pads )
checkColliding( item, pad );
}
}
void FOOTPRINT::swapData( BOARD_ITEM* aImage )
{
wxASSERT( aImage->Type() == PCB_FOOTPRINT_T );
FOOTPRINT* image = static_cast<FOOTPRINT*>( aImage );
std::swap( *this, *image );
RunOnChildren(
[&]( BOARD_ITEM* child )
{
child->SetParent( this );
},
RECURSE_MODE::NO_RECURSE );
image->RunOnChildren(
[&]( BOARD_ITEM* child )
{
child->SetParent( image );
},
RECURSE_MODE::NO_RECURSE );
}
bool FOOTPRINT::HasThroughHolePads() const
{
for( PAD* pad : Pads() )
{
if( pad->GetAttribute() != PAD_ATTRIB::SMD )
return true;
}
return false;
}
bool FOOTPRINT::operator==( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != PCB_FOOTPRINT_T )
return false;
const FOOTPRINT& other = static_cast<const FOOTPRINT&>( aOther );
return *this == other;
}
bool FOOTPRINT::operator==( const FOOTPRINT& aOther ) const
{
if( m_pads.size() != aOther.m_pads.size() )
return false;
for( size_t ii = 0; ii < m_pads.size(); ++ii )
{
if( !( *m_pads[ii] == *aOther.m_pads[ii] ) )
return false;
}
if( m_drawings.size() != aOther.m_drawings.size() )
return false;
for( size_t ii = 0; ii < m_drawings.size(); ++ii )
{
if( !( *m_drawings[ii] == *aOther.m_drawings[ii] ) )
return false;
}
if( m_zones.size() != aOther.m_zones.size() )
return false;
for( size_t ii = 0; ii < m_zones.size(); ++ii )
{
if( !( *m_zones[ii] == *aOther.m_zones[ii] ) )
return false;
}
// Compare fields in ordinally-sorted order
std::vector<PCB_FIELD*> fields, otherFields;
GetFields( fields, false );
aOther.GetFields( otherFields, false );
if( fields.size() != otherFields.size() )
return false;
for( size_t ii = 0; ii < fields.size(); ++ii )
{
if( fields[ii] )
{
if( !( *fields[ii] == *otherFields[ii] ) )
return false;
}
}
return true;
}
double FOOTPRINT::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != PCB_FOOTPRINT_T )
return 0.0;
const FOOTPRINT& other = static_cast<const FOOTPRINT&>( aOther );
double similarity = 1.0;
for( const PAD* pad : m_pads)
{
const PAD* otherPad = other.FindPadByNumber( pad->GetNumber() );
if( !otherPad )
continue;
similarity *= pad->Similarity( *otherPad );
}
return similarity;
}
bool FOOTPRINT::cmp_drawings::operator()( const BOARD_ITEM* itemA, const BOARD_ITEM* itemB ) const
{
if( itemA->Type() != itemB->Type() )
return itemA->Type() < itemB->Type();
if( itemA->GetLayer() != itemB->GetLayer() )
return itemA->GetLayer() < itemB->GetLayer();
if( itemA->Type() == PCB_SHAPE_T )
{
const PCB_SHAPE* dwgA = static_cast<const PCB_SHAPE*>( itemA );
const PCB_SHAPE* dwgB = static_cast<const PCB_SHAPE*>( itemB );
if( dwgA->GetShape() != dwgB->GetShape() )
return dwgA->GetShape() < dwgB->GetShape();
// GetStart() and GetEnd() have no meaning with polygons.
// We cannot use them for sorting polygons
if( dwgA->GetShape() != SHAPE_T::POLY )
{
if( dwgA->GetStart().x != dwgB->GetStart().x )
return dwgA->GetStart().x < dwgB->GetStart().x;
if( dwgA->GetStart().y != dwgB->GetStart().y )
return dwgA->GetStart().y < dwgB->GetStart().y;
if( dwgA->GetEnd().x != dwgB->GetEnd().x )
return dwgA->GetEnd().x < dwgB->GetEnd().x;
if( dwgA->GetEnd().y != dwgB->GetEnd().y )
return dwgA->GetEnd().y < dwgB->GetEnd().y;
}
if( dwgA->GetShape() == SHAPE_T::ARC )
{
if( dwgA->GetCenter().x != dwgB->GetCenter().x )
return dwgA->GetCenter().x < dwgB->GetCenter().x;
if( dwgA->GetCenter().y != dwgB->GetCenter().y )
return dwgA->GetCenter().y < dwgB->GetCenter().y;
}
else if( dwgA->GetShape() == SHAPE_T::BEZIER )
{
if( dwgA->GetBezierC1().x != dwgB->GetBezierC1().x )
return dwgA->GetBezierC1().x < dwgB->GetBezierC1().x;
if( dwgA->GetBezierC1().y != dwgB->GetBezierC1().y )
return dwgA->GetBezierC1().y < dwgB->GetBezierC1().y;
if( dwgA->GetBezierC2().x != dwgB->GetBezierC2().x )
return dwgA->GetBezierC2().x < dwgB->GetBezierC2().x;
if( dwgA->GetBezierC2().y != dwgB->GetBezierC2().y )
return dwgA->GetBezierC2().y < dwgB->GetBezierC2().y;
}
else if( dwgA->GetShape() == SHAPE_T::POLY )
{
if( dwgA->GetPolyShape().TotalVertices() != dwgB->GetPolyShape().TotalVertices() )
return dwgA->GetPolyShape().TotalVertices() < dwgB->GetPolyShape().TotalVertices();
for( int ii = 0; ii < dwgA->GetPolyShape().TotalVertices(); ++ii )
{
if( dwgA->GetPolyShape().CVertex( ii ).x != dwgB->GetPolyShape().CVertex( ii ).x )
return dwgA->GetPolyShape().CVertex( ii ).x
< dwgB->GetPolyShape().CVertex( ii ).x;
if( dwgA->GetPolyShape().CVertex( ii ).y != dwgB->GetPolyShape().CVertex( ii ).y )
return dwgA->GetPolyShape().CVertex( ii ).y
< dwgB->GetPolyShape().CVertex( ii ).y;
}
}
if( dwgA->GetWidth() != dwgB->GetWidth() )
return dwgA->GetWidth() < dwgB->GetWidth();
}
if( itemA->m_Uuid != itemB->m_Uuid )
return itemA->m_Uuid < itemB->m_Uuid;
return itemA < itemB;
}
bool FOOTPRINT::cmp_pads::operator()( const PAD* aFirst, const PAD* aSecond ) const
{
if( aFirst->GetNumber() != aSecond->GetNumber() )
return StrNumCmp( aFirst->GetNumber(), aSecond->GetNumber() ) < 0;
if( aFirst->GetFPRelativePosition().x != aSecond->GetFPRelativePosition().x )
return aFirst->GetFPRelativePosition().x < aSecond->GetFPRelativePosition().x;
if( aFirst->GetFPRelativePosition().y != aSecond->GetFPRelativePosition().y )
return aFirst->GetFPRelativePosition().y < aSecond->GetFPRelativePosition().y;
std::optional<bool> padCopperMatches;
// Pick the "most complex" padstack to iterate
const PAD* checkPad = aFirst;
if( aSecond->Padstack().Mode() == PADSTACK::MODE::CUSTOM
|| ( aSecond->Padstack().Mode() == PADSTACK::MODE::FRONT_INNER_BACK &&
aFirst->Padstack().Mode() == PADSTACK::MODE::NORMAL ) )
{
checkPad = aSecond;
}
checkPad->Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
if( aFirst->GetSize( aLayer ).x != aSecond->GetSize( aLayer ).x )
padCopperMatches = aFirst->GetSize( aLayer ).x < aSecond->GetSize( aLayer ).x;
else if( aFirst->GetSize( aLayer ).y != aSecond->GetSize( aLayer ).y )
padCopperMatches = aFirst->GetSize( aLayer ).y < aSecond->GetSize( aLayer ).y;
else if( aFirst->GetShape( aLayer ) != aSecond->GetShape( aLayer ) )
padCopperMatches = aFirst->GetShape( aLayer ) < aSecond->GetShape( aLayer );
} );
if( padCopperMatches.has_value() )
return *padCopperMatches;
if( aFirst->GetLayerSet().Seq() != aSecond->GetLayerSet().Seq() )
return aFirst->GetLayerSet().Seq() < aSecond->GetLayerSet().Seq();
if( aFirst->m_Uuid != aSecond->m_Uuid )
return aFirst->m_Uuid < aSecond->m_Uuid;
return aFirst < aSecond;
}
#if 0
bool FOOTPRINT::cmp_padstack::operator()( const PAD* aFirst, const PAD* aSecond ) const
{
if( aFirst->GetSize().x != aSecond->GetSize().x )
return aFirst->GetSize().x < aSecond->GetSize().x;
if( aFirst->GetSize().y != aSecond->GetSize().y )
return aFirst->GetSize().y < aSecond->GetSize().y;
if( aFirst->GetShape() != aSecond->GetShape() )
return aFirst->GetShape() < aSecond->GetShape();
if( aFirst->GetLayerSet().Seq() != aSecond->GetLayerSet().Seq() )
return aFirst->GetLayerSet().Seq() < aSecond->GetLayerSet().Seq();
if( aFirst->GetDrillSizeX() != aSecond->GetDrillSizeX() )
return aFirst->GetDrillSizeX() < aSecond->GetDrillSizeX();
if( aFirst->GetDrillSizeY() != aSecond->GetDrillSizeY() )
return aFirst->GetDrillSizeY() < aSecond->GetDrillSizeY();
if( aFirst->GetDrillShape() != aSecond->GetDrillShape() )
return aFirst->GetDrillShape() < aSecond->GetDrillShape();
if( aFirst->GetAttribute() != aSecond->GetAttribute() )
return aFirst->GetAttribute() < aSecond->GetAttribute();
if( aFirst->GetOrientation() != aSecond->GetOrientation() )
return aFirst->GetOrientation() < aSecond->GetOrientation();
if( aFirst->GetSolderMaskExpansion() != aSecond->GetSolderMaskExpansion() )
return aFirst->GetSolderMaskExpansion() < aSecond->GetSolderMaskExpansion();
if( aFirst->GetSolderPasteMargin() != aSecond->GetSolderPasteMargin() )
return aFirst->GetSolderPasteMargin() < aSecond->GetSolderPasteMargin();
if( aFirst->GetLocalSolderMaskMargin() != aSecond->GetLocalSolderMaskMargin() )
return aFirst->GetLocalSolderMaskMargin() < aSecond->GetLocalSolderMaskMargin();
const std::shared_ptr<SHAPE_POLY_SET>& firstShape = aFirst->GetEffectivePolygon( ERROR_INSIDE );
const std::shared_ptr<SHAPE_POLY_SET>& secondShape = aSecond->GetEffectivePolygon( ERROR_INSIDE );
if( firstShape->VertexCount() != secondShape->VertexCount() )
return firstShape->VertexCount() < secondShape->VertexCount();
for( int ii = 0; ii < firstShape->VertexCount(); ++ii )
{
if( firstShape->CVertex( ii ).x != secondShape->CVertex( ii ).x )
return firstShape->CVertex( ii ).x < secondShape->CVertex( ii ).x;
if( firstShape->CVertex( ii ).y != secondShape->CVertex( ii ).y )
return firstShape->CVertex( ii ).y < secondShape->CVertex( ii ).y;
}
return false;
}
#endif
bool FOOTPRINT::cmp_zones::operator()( const ZONE* aFirst, const ZONE* aSecond ) const
{
if( aFirst->GetAssignedPriority() != aSecond->GetAssignedPriority() )
return aFirst->GetAssignedPriority() < aSecond->GetAssignedPriority();
if( aFirst->GetLayerSet().Seq() != aSecond->GetLayerSet().Seq() )
return aFirst->GetLayerSet().Seq() < aSecond->GetLayerSet().Seq();
if( aFirst->Outline()->TotalVertices() != aSecond->Outline()->TotalVertices() )
return aFirst->Outline()->TotalVertices() < aSecond->Outline()->TotalVertices();
for( int ii = 0; ii < aFirst->Outline()->TotalVertices(); ++ii )
{
if( aFirst->Outline()->CVertex( ii ).x != aSecond->Outline()->CVertex( ii ).x )
return aFirst->Outline()->CVertex( ii ).x < aSecond->Outline()->CVertex( ii ).x;
if( aFirst->Outline()->CVertex( ii ).y != aSecond->Outline()->CVertex( ii ).y )
return aFirst->Outline()->CVertex( ii ).y < aSecond->Outline()->CVertex( ii ).y;
}
if( aFirst->m_Uuid != aSecond->m_Uuid )
return aFirst->m_Uuid < aSecond->m_Uuid;
return aFirst < aSecond;
}
void FOOTPRINT::TransformPadsToPolySet( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer,
int aClearance, int aMaxError, ERROR_LOC aErrorLoc ) const
{
auto processPad =
[&]( const PAD* pad, PCB_LAYER_ID padLayer )
{
VECTOR2I clearance( aClearance, aClearance );
switch( aLayer )
{
case F_Mask:
case B_Mask:
clearance.x += pad->GetSolderMaskExpansion( padLayer );
clearance.y += pad->GetSolderMaskExpansion( padLayer );
break;
case F_Paste:
case B_Paste:
clearance += pad->GetSolderPasteMargin( padLayer );
break;
default:
break;
}
// Our standard TransformShapeToPolygon() routines can't handle differing x:y clearance
// values (which get generated when a relative paste margin is used with an oblong pad).
// So we apply this huge hack and fake a larger pad to run the transform on.
// Of course being a hack it falls down when dealing with custom shape pads (where the
// size is only the size of the anchor), so for those we punt and just use clearance.x.
if( ( clearance.x < 0 || clearance.x != clearance.y )
&& pad->GetShape( padLayer ) != PAD_SHAPE::CUSTOM )
{
VECTOR2I dummySize = pad->GetSize( padLayer ) + clearance + clearance;
if( dummySize.x <= 0 || dummySize.y <= 0 )
return;
PAD dummy( *pad );
dummy.SetSize( padLayer, dummySize );
dummy.TransformShapeToPolygon( aBuffer, padLayer, 0, aMaxError, aErrorLoc );
}
else
{
pad->TransformShapeToPolygon( aBuffer, padLayer, clearance.x, aMaxError,
aErrorLoc );
}
};
for( const PAD* pad : m_pads )
{
if( !pad->FlashLayer( aLayer ) )
continue;
if( aLayer == UNDEFINED_LAYER )
{
pad->Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID l )
{
processPad( pad, l );
} );
}
else
{
processPad( pad, aLayer );
}
}
}
void FOOTPRINT::TransformFPShapesToPolySet( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer,
int aClearance, int aError, ERROR_LOC aErrorLoc,
bool aIncludeText, bool aIncludeShapes,
bool aIncludePrivateItems ) const
{
for( BOARD_ITEM* item : GraphicalItems() )
{
if( GetPrivateLayers().test( item->GetLayer() ) && !aIncludePrivateItems )
continue;
if( item->Type() == PCB_TEXT_T && aIncludeText )
{
PCB_TEXT* text = static_cast<PCB_TEXT*>( item );
if( aLayer != UNDEFINED_LAYER && text->GetLayer() == aLayer )
text->TransformTextToPolySet( aBuffer, aClearance, aError, aErrorLoc );
}
if( item->Type() == PCB_TEXTBOX_T && aIncludeText )
{
PCB_TEXTBOX* textbox = static_cast<PCB_TEXTBOX*>( item );
if( aLayer != UNDEFINED_LAYER && textbox->GetLayer() == aLayer )
{
// border
if( textbox->IsBorderEnabled() )
{
textbox->PCB_SHAPE::TransformShapeToPolygon( aBuffer, aLayer, 0, aError,
aErrorLoc );
}
// text
textbox->TransformTextToPolySet( aBuffer, 0, aError, aErrorLoc );
}
}
if( item->Type() == PCB_SHAPE_T && aIncludeShapes )
{
const PCB_SHAPE* shape = static_cast<PCB_SHAPE*>( item );
if( aLayer != UNDEFINED_LAYER && shape->GetLayer() == aLayer )
shape->TransformShapeToPolySet( aBuffer, aLayer, 0, aError, aErrorLoc );
}
}
if( aIncludeText )
{
for( const PCB_FIELD* field : m_fields )
{
if( field->GetLayer() == aLayer && field->IsVisible() )
field->TransformTextToPolySet( aBuffer, aClearance, aError, aErrorLoc );
}
}
}
std::set<KIFONT::OUTLINE_FONT*> FOOTPRINT::GetFonts() const
{
using OUTLINE_FONT = KIFONT::OUTLINE_FONT;
using EMBEDDING_PERMISSION = OUTLINE_FONT::EMBEDDING_PERMISSION;
std::set<OUTLINE_FONT*> fonts;
for( BOARD_ITEM* item : GraphicalItems() )
{
if( auto* text = dynamic_cast<EDA_TEXT*>( item ) )
{
if( auto* font = text->GetFont(); font && !font->IsStroke() )
{
auto* outline = static_cast<OUTLINE_FONT*>( font );
auto permission = outline->GetEmbeddingPermission();
if( permission == EMBEDDING_PERMISSION::EDITABLE
|| permission == EMBEDDING_PERMISSION::INSTALLABLE )
{
fonts.insert( outline );
}
}
}
}
return fonts;
}
void FOOTPRINT::EmbedFonts()
{
std::set<KIFONT::OUTLINE_FONT*> fonts = GetFonts();
for( auto* font : fonts )
{
auto file = GetEmbeddedFiles()->AddFile( font->GetFileName(), false );
file->type = EMBEDDED_FILES::EMBEDDED_FILE::FILE_TYPE::FONT;
}
}
void FOOTPRINT::SetStaticComponentClass( const COMPONENT_CLASS* aClass ) const
{
m_componentClassCacheProxy->SetStaticComponentClass( aClass );
}
const COMPONENT_CLASS* FOOTPRINT::GetStaticComponentClass() const
{
return m_componentClassCacheProxy->GetStaticComponentClass();
}
void FOOTPRINT::RecomputeComponentClass() const
{
m_componentClassCacheProxy->RecomputeComponentClass();
}
const COMPONENT_CLASS* FOOTPRINT::GetComponentClass() const
{
return m_componentClassCacheProxy->GetComponentClass();
}
wxString FOOTPRINT::GetComponentClassAsString() const
{
if( !m_componentClassCacheProxy->GetComponentClass()->IsEmpty() )
{
return m_componentClassCacheProxy->GetComponentClass()->GetName();
}
return wxEmptyString;
}
void FOOTPRINT::ResolveComponentClassNames(
BOARD* aBoard, const std::unordered_set<wxString>& aComponentClassNames )
{
const COMPONENT_CLASS* componentClass =
aBoard->GetComponentClassManager().GetEffectiveStaticComponentClass(
aComponentClassNames );
SetStaticComponentClass( componentClass );
}
void FOOTPRINT::InvalidateComponentClassCache() const
{
m_componentClassCacheProxy->InvalidateCache();
}
static struct FOOTPRINT_DESC
{
FOOTPRINT_DESC()
{
ENUM_MAP<ZONE_CONNECTION>& zcMap = ENUM_MAP<ZONE_CONNECTION>::Instance();
if( zcMap.Choices().GetCount() == 0 )
{
zcMap.Undefined( ZONE_CONNECTION::INHERITED );
zcMap.Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) )
.Map( ZONE_CONNECTION::NONE, _HKI( "None" ) )
.Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) )
.Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) )
.Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Thermal reliefs for PTH" ) );
}
ENUM_MAP<PCB_LAYER_ID>& layerEnum = ENUM_MAP<PCB_LAYER_ID>::Instance();
if( layerEnum.Choices().GetCount() == 0 )
{
layerEnum.Undefined( UNDEFINED_LAYER );
for( PCB_LAYER_ID layer : LSET::AllLayersMask().Seq() )
layerEnum.Map( layer, LSET::Name( layer ) );
}
wxPGChoices fpLayers; // footprints might be placed only on F.Cu & B.Cu
fpLayers.Add( LSET::Name( F_Cu ), F_Cu );
fpLayers.Add( LSET::Name( B_Cu ), B_Cu );
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( FOOTPRINT );
propMgr.AddTypeCast( new TYPE_CAST<FOOTPRINT, BOARD_ITEM> );
propMgr.AddTypeCast( new TYPE_CAST<FOOTPRINT, BOARD_ITEM_CONTAINER> );
propMgr.InheritsAfter( TYPE_HASH( FOOTPRINT ), TYPE_HASH( BOARD_ITEM ) );
propMgr.InheritsAfter( TYPE_HASH( FOOTPRINT ), TYPE_HASH( BOARD_ITEM_CONTAINER ) );
auto layer = new PROPERTY_ENUM<FOOTPRINT, PCB_LAYER_ID>( _HKI( "Layer" ),
&FOOTPRINT::SetLayerAndFlip, &FOOTPRINT::GetLayer );
layer->SetChoices( fpLayers );
propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Layer" ), layer );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, double>( _HKI( "Orientation" ),
&FOOTPRINT::SetOrientationDegrees, &FOOTPRINT::GetOrientationDegrees,
PROPERTY_DISPLAY::PT_DEGREE ) );
const wxString groupFields = _HKI( "Fields" );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>( _HKI( "Reference" ),
&FOOTPRINT::SetReference, &FOOTPRINT::GetReferenceAsString ),
groupFields );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>( _HKI( "Value" ),
&FOOTPRINT::SetValue, &FOOTPRINT::GetValueAsString ),
groupFields );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>( _HKI( "Library Link" ),
NO_SETTER( FOOTPRINT, wxString ), &FOOTPRINT::GetFPIDAsString ),
groupFields );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>( _HKI( "Library Description" ),
NO_SETTER( FOOTPRINT, wxString ), &FOOTPRINT::GetLibDescription ),
groupFields );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>( _HKI( "Keywords" ),
NO_SETTER( FOOTPRINT, wxString ), &FOOTPRINT::GetKeywords ),
groupFields );
// Note: Also used by DRC engine
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>(
_HKI( "Component Class" ), NO_SETTER( FOOTPRINT, wxString ),
&FOOTPRINT::GetComponentClassAsString ), groupFields )
.SetIsHiddenFromLibraryEditors();
const wxString groupAttributes = _HKI( "Attributes" );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, bool>( _HKI( "Not in Schematic" ),
&FOOTPRINT::SetBoardOnly, &FOOTPRINT::IsBoardOnly ), groupAttributes );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, bool>( _HKI( "Exclude From Position Files" ),
&FOOTPRINT::SetExcludedFromPosFiles, &FOOTPRINT::IsExcludedFromPosFiles ),
groupAttributes );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, bool>( _HKI( "Exclude From Bill of Materials" ),
&FOOTPRINT::SetExcludedFromBOM, &FOOTPRINT::IsExcludedFromBOM ),
groupAttributes );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, bool>( _HKI( "Do not Populate" ),
&FOOTPRINT::SetDNP, &FOOTPRINT::IsDNP ),
groupAttributes );
const wxString groupOverrides = _HKI( "Overrides" );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, bool>(
_HKI( "Exempt From Courtyard Requirement" ),
&FOOTPRINT::SetAllowMissingCourtyard, &FOOTPRINT::AllowMissingCourtyard ),
groupOverrides );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, std::optional<int>>(
_HKI( "Clearance Override" ),
&FOOTPRINT::SetLocalClearance, &FOOTPRINT::GetLocalClearance,
PROPERTY_DISPLAY::PT_SIZE ),
groupOverrides );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, std::optional<int>>(
_HKI( "Solderpaste Margin Override" ),
&FOOTPRINT::SetLocalSolderPasteMargin, &FOOTPRINT::GetLocalSolderPasteMargin,
PROPERTY_DISPLAY::PT_SIZE ),
groupOverrides );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, std::optional<double>>(
_HKI( "Solderpaste Margin Ratio Override" ),
&FOOTPRINT::SetLocalSolderPasteMarginRatio,
&FOOTPRINT::GetLocalSolderPasteMarginRatio,
PROPERTY_DISPLAY::PT_RATIO ),
groupOverrides );
propMgr.AddProperty( new PROPERTY_ENUM<FOOTPRINT, ZONE_CONNECTION>(
_HKI( "Zone Connection Style" ),
&FOOTPRINT::SetLocalZoneConnection, &FOOTPRINT::GetLocalZoneConnection ),
groupOverrides );
}
} _FOOTPRINT_DESC;