kicad-source/pcbnew/tools/pcb_grid_helper.cpp
John Beard e016dc52fd Pcbnew: Add concept of a 'point'
This is a zero-dimensional object that can be used for snapping
and documentation of useful, but non-physical features on a
board or footprint. They do not correspond to any physical
output in exports or plots.

Points do have a "size", but this is a graphical property only
and determines how large they are drawn on the board.

They also have a layer, which allows them to be selected and
made visible according to layer filters.

Fixes: https://gitlab.com/kicad/code/kicad/-/issues/4691
2025-09-01 23:44:21 +08:00

1823 lines
64 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 CERN
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "pcb_grid_helper.h"
#include <functional>
#include <algorithm>
#include <advanced_config.h>
#include <pcb_dimension.h>
#include <pcb_shape.h>
#include <footprint.h>
#include <pcb_table.h>
#include <pad.h>
#include <pcb_group.h>
#include <pcb_reference_image.h>
#include <pcb_track.h>
#include <zone.h>
#include <gal/graphics_abstraction_layer.h>
#include <geometry/intersection.h>
#include <geometry/nearest.h>
#include <geometry/oval.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_utils.h>
#include <macros.h>
#include <math/util.h> // for KiROUND
#include <gal/painter.h>
#include <pcbnew_settings.h>
#include <tool/tool_manager.h>
#include <tools/pcb_tool_base.h>
#include <view/view.h>
namespace
{
/**
* Get the INTERSECTABLE_GEOM for a BOARD_ITEM if it's supported.
*
* This is the idealised geometry, e.g. a zero-width line or circle.
*/
std::optional<INTERSECTABLE_GEOM> GetBoardIntersectable( const BOARD_ITEM& aItem )
{
switch( aItem.Type() )
{
case PCB_SHAPE_T:
{
const PCB_SHAPE& shape = static_cast<const PCB_SHAPE&>( aItem );
switch( shape.GetShape() )
{
case SHAPE_T::SEGMENT: return SEG{ shape.GetStart(), shape.GetEnd() };
case SHAPE_T::CIRCLE: return CIRCLE{ shape.GetCenter(), shape.GetRadius() };
case SHAPE_T::ARC: return SHAPE_ARC{ shape.GetStart(), shape.GetArcMid(), shape.GetEnd(), 0 };
case SHAPE_T::RECTANGLE: return BOX2I::ByCorners( shape.GetStart(), shape.GetEnd() );
default: break;
}
break;
}
case PCB_TRACE_T:
{
const PCB_TRACK& track = static_cast<const PCB_TRACK&>( aItem );
return SEG{ track.GetStart(), track.GetEnd() };
}
case PCB_ARC_T:
{
const PCB_ARC& arc = static_cast<const PCB_ARC&>( aItem );
return SHAPE_ARC{ arc.GetStart(), arc.GetMid(), arc.GetEnd(), 0 };
}
case PCB_REFERENCE_IMAGE_T:
{
const PCB_REFERENCE_IMAGE& refImage = static_cast<const PCB_REFERENCE_IMAGE&>( aItem );
return refImage.GetBoundingBox();
}
default: break;
}
return std::nullopt;
}
/**
* Find the closest point on a BOARD_ITEM to a given point.
*
* Only works for items that have a NEARABLE_GEOM defined, it's
* not a general purpose function.
*
* @return The closest point on the item to aPos, or std::nullopt if the item
* doesn't have a NEARABLE_GEOM defined.
*/
std::optional<int64_t> FindSquareDistanceToItem( const BOARD_ITEM& item, const VECTOR2I& aPos )
{
std::optional<INTERSECTABLE_GEOM> intersectable = GetBoardIntersectable( item );
std::optional<NEARABLE_GEOM> nearable;
if( intersectable )
{
// Exploit the intersectable as a nearable
std::visit(
[&]( const auto& geom )
{
nearable = NEARABLE_GEOM( geom );
},
*intersectable );
}
// Whatever the item is, we don't have a nearable for it
if( !nearable )
return std::nullopt;
const VECTOR2I nearestPt = GetNearestPoint( *nearable, aPos );
return nearestPt.SquaredDistance( aPos );
}
} // namespace
PCB_GRID_HELPER::PCB_GRID_HELPER() :
GRID_HELPER(),
m_magneticSettings( nullptr )
{
}
PCB_GRID_HELPER::PCB_GRID_HELPER( TOOL_MANAGER* aToolMgr, MAGNETIC_SETTINGS* aMagneticSettings ) :
GRID_HELPER( aToolMgr, LAYER_ANCHOR ),
m_magneticSettings( aMagneticSettings )
{
if( !m_toolMgr )
return;
KIGFX::VIEW* view = m_toolMgr->GetView();
KIGFX::RENDER_SETTINGS* settings = view->GetPainter()->GetSettings();
KIGFX::COLOR4D auxItemsColor = settings->GetLayerColor( LAYER_AUX_ITEMS );
m_viewAxis.SetSize( 20000 );
m_viewAxis.SetStyle( KIGFX::ORIGIN_VIEWITEM::CROSS );
m_viewAxis.SetColor( auxItemsColor.WithAlpha( 0.4 ) );
m_viewAxis.SetDrawAtZero( true );
view->Add( &m_viewAxis );
view->SetVisible( &m_viewAxis, false );
m_viewSnapPoint.SetSize( 10 );
m_viewSnapPoint.SetStyle( KIGFX::ORIGIN_VIEWITEM::CIRCLE_CROSS );
m_viewSnapPoint.SetColor( auxItemsColor );
m_viewSnapPoint.SetDrawAtZero( true );
view->Add( &m_viewSnapPoint );
view->SetVisible( &m_viewSnapPoint, false );
}
PCB_GRID_HELPER::~PCB_GRID_HELPER()
{
if( !m_toolMgr )
return;
KIGFX::VIEW* view = m_toolMgr->GetView();
view->Remove( &m_viewAxis );
view->Remove( &m_viewSnapPoint );
}
void PCB_GRID_HELPER::AddConstructionItems( std::vector<BOARD_ITEM*> aItems, bool aExtensionOnly,
bool aIsPersistent )
{
if( !ADVANCED_CFG::GetCfg().m_EnableExtensionSnaps )
return;
// For all the elements that get drawn construction geometry,
// add something suitable to the construction helper.
// This can be nothing.
auto constructionItemsBatch = std::make_unique<CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM_BATCH>();
std::vector<VECTOR2I> referenceOnlyPoints;
for( BOARD_ITEM* item : aItems )
{
std::vector<KIGFX::CONSTRUCTION_GEOM::DRAWABLE> constructionDrawables;
switch( item->Type() )
{
case PCB_SHAPE_T:
{
PCB_SHAPE& shape = static_cast<PCB_SHAPE&>( *item );
switch( shape.GetShape() )
{
case SHAPE_T::SEGMENT:
{
if( !aExtensionOnly )
{
constructionDrawables.emplace_back( LINE{ shape.GetStart(), shape.GetEnd() } );
}
else
{
// Two rays, extending from the segment ends
const VECTOR2I segVec = shape.GetEnd() - shape.GetStart();
constructionDrawables.emplace_back( HALF_LINE{ shape.GetStart(), shape.GetStart() - segVec } );
constructionDrawables.emplace_back( HALF_LINE{ shape.GetEnd(), shape.GetEnd() + segVec } );
}
if( aIsPersistent )
{
// include the original endpoints as construction items
// (this allows H/V snapping)
constructionDrawables.emplace_back( shape.GetStart() );
constructionDrawables.emplace_back( shape.GetEnd() );
// But mark them as references, so they don't get snapped to themsevles
referenceOnlyPoints.emplace_back( shape.GetStart() );
referenceOnlyPoints.emplace_back( shape.GetEnd() );
}
break;
}
case SHAPE_T::ARC:
{
if( !aExtensionOnly )
{
constructionDrawables.push_back( CIRCLE{ shape.GetCenter(), shape.GetRadius() } );
}
else
{
// The rest of the circle is the arc through the opposite point to the midpoint
const VECTOR2I oppositeMid = shape.GetCenter() + ( shape.GetCenter() - shape.GetArcMid() );
constructionDrawables.push_back( SHAPE_ARC{ shape.GetStart(), oppositeMid, shape.GetEnd(), 0 } );
}
constructionDrawables.push_back( shape.GetCenter() );
if( aIsPersistent )
{
// include the original endpoints as construction items
// (this allows H/V snapping)
constructionDrawables.emplace_back( shape.GetStart() );
constructionDrawables.emplace_back( shape.GetEnd() );
// But mark them as references, so they don't get snapped to themselves
referenceOnlyPoints.emplace_back( shape.GetStart() );
referenceOnlyPoints.emplace_back( shape.GetEnd() );
}
break;
}
case SHAPE_T::CIRCLE:
case SHAPE_T::RECTANGLE:
{
constructionDrawables.push_back( shape.GetCenter() );
break;
}
default:
// This shape doesn't have any construction geometry to draw
break;
}
break;
}
case PCB_REFERENCE_IMAGE_T:
{
const PCB_REFERENCE_IMAGE& pcbRefImg = static_cast<PCB_REFERENCE_IMAGE&>( *item );
const REFERENCE_IMAGE& refImg = pcbRefImg.GetReferenceImage();
constructionDrawables.push_back( refImg.GetPosition() );
if( refImg.GetTransformOriginOffset() != VECTOR2I( 0, 0 ) )
constructionDrawables.push_back( refImg.GetPosition() + refImg.GetTransformOriginOffset() );
for( const SEG& seg : KIGEOM::BoxToSegs( refImg.GetBoundingBox() ) )
constructionDrawables.push_back( seg );
break;
}
default:
// This item doesn't have any construction geometry to draw
break;
}
// At this point, constructionDrawables can be empty, which is fine
// (it means there's no additional construction geometry to draw, but
// the item is still going to be proposed for activation)
constructionItemsBatch->emplace_back( CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM{
CONSTRUCTION_MANAGER::SOURCE::FROM_ITEMS,
item,
std::move( constructionDrawables ),
} );
}
if( referenceOnlyPoints.size() )
getSnapManager().SetReferenceOnlyPoints( std::move( referenceOnlyPoints ) );
// Let the manager handle it
getSnapManager().GetConstructionManager().ProposeConstructionItems( std::move( constructionItemsBatch ),
aIsPersistent );
}
VECTOR2I PCB_GRID_HELPER::AlignToSegment( const VECTOR2I& aPoint, const SEG& aSeg )
{
const int c_gridSnapEpsilon_sq = 4;
VECTOR2I aligned = Align( aPoint );
if( !m_enableSnap )
return aligned;
std::vector<VECTOR2I> points;
const SEG testSegments[] = { SEG( aligned, aligned + VECTOR2( 1, 0 ) ),
SEG( aligned, aligned + VECTOR2( 0, 1 ) ),
SEG( aligned, aligned + VECTOR2( 1, 1 ) ),
SEG( aligned, aligned + VECTOR2( 1, -1 ) ) };
for( const SEG& seg : testSegments )
{
OPT_VECTOR2I vec = aSeg.IntersectLines( seg );
if( vec && aSeg.SquaredDistance( *vec ) <= c_gridSnapEpsilon_sq )
points.push_back( *vec );
}
VECTOR2I nearest = aligned;
SEG::ecoord min_d_sq = VECTOR2I::ECOORD_MAX;
// Snap by distance between pointer and endpoints
for( const VECTOR2I& pt : { aSeg.A, aSeg.B } )
{
SEG::ecoord d_sq = ( pt - aPoint ).SquaredEuclideanNorm();
if( d_sq < min_d_sq )
{
min_d_sq = d_sq;
nearest = pt;
}
}
// Snap by distance between aligned cursor and intersections
for( const VECTOR2I& pt : points )
{
SEG::ecoord d_sq = ( pt - aligned ).SquaredEuclideanNorm();
if( d_sq < min_d_sq )
{
min_d_sq = d_sq;
nearest = pt;
}
}
return nearest;
}
VECTOR2I PCB_GRID_HELPER::AlignToArc( const VECTOR2I& aPoint, const SHAPE_ARC& aArc )
{
VECTOR2I aligned = Align( aPoint );
if( !m_enableSnap )
return aligned;
std::vector<VECTOR2I> points;
aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 1, 0 ) ), &points );
aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 0, 1 ) ), &points );
aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 1, 1 ) ), &points );
aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 1, -1 ) ), &points );
VECTOR2I nearest = aligned;
SEG::ecoord min_d_sq = VECTOR2I::ECOORD_MAX;
// Snap by distance between pointer and endpoints
for( const VECTOR2I& pt : { aArc.GetP0(), aArc.GetP1() } )
{
SEG::ecoord d_sq = ( pt - aPoint ).SquaredEuclideanNorm();
if( d_sq < min_d_sq )
{
min_d_sq = d_sq;
nearest = pt;
}
}
// Snap by distance between aligned cursor and intersections
for( const VECTOR2I& pt : points )
{
SEG::ecoord d_sq = ( pt - aligned ).SquaredEuclideanNorm();
if( d_sq < min_d_sq )
{
min_d_sq = d_sq;
nearest = pt;
}
}
return nearest;
}
VECTOR2I PCB_GRID_HELPER::SnapToPad( const VECTOR2I& aMousePos, std::deque<PAD*>& aPads )
{
clearAnchors();
for( BOARD_ITEM* item : aPads )
{
if( item->HitTest( aMousePos ) )
computeAnchors( item, aMousePos, true, nullptr );
}
double minDist = std::numeric_limits<double>::max();
ANCHOR* nearestOrigin = nullptr;
for( ANCHOR& a : m_anchors )
{
if( ( ORIGIN & a.flags ) != ORIGIN )
continue;
double dist = a.Distance( aMousePos );
if( dist < minDist )
{
minDist = dist;
nearestOrigin = &a;
}
}
return nearestOrigin ? nearestOrigin->pos : aMousePos;
}
VECTOR2I PCB_GRID_HELPER::BestDragOrigin( const VECTOR2I &aMousePos,
std::vector<BOARD_ITEM*>& aItems,
GRID_HELPER_GRIDS aGrid,
const PCB_SELECTION_FILTER_OPTIONS* aSelectionFilter )
{
clearAnchors();
computeAnchors( aItems, aMousePos, true, aSelectionFilter, nullptr, true );
double lineSnapMinCornerDistance = m_toolMgr->GetView()->ToWorld( 50 );
ANCHOR* nearestOutline = nearestAnchor( aMousePos, OUTLINE );
ANCHOR* nearestCorner = nearestAnchor( aMousePos, CORNER );
ANCHOR* nearestOrigin = nearestAnchor( aMousePos, ORIGIN );
ANCHOR* best = nullptr;
double minDist = std::numeric_limits<double>::max();
if( nearestOrigin )
{
minDist = nearestOrigin->Distance( aMousePos );
best = nearestOrigin;
}
if( nearestCorner )
{
double dist = nearestCorner->Distance( aMousePos );
if( dist < minDist )
{
minDist = dist;
best = nearestCorner;
}
}
if( nearestOutline )
{
double dist = nearestOutline->Distance( aMousePos );
if( minDist > lineSnapMinCornerDistance && dist < minDist )
best = nearestOutline;
}
return best ? best->pos : aMousePos;
}
VECTOR2I PCB_GRID_HELPER::BestSnapAnchor( const VECTOR2I& aOrigin, BOARD_ITEM* aReferenceItem,
GRID_HELPER_GRIDS aGrid )
{
LSET layers;
std::vector<BOARD_ITEM*> item;
if( aReferenceItem )
{
layers = aReferenceItem->GetLayerSet();
item.push_back( aReferenceItem );
}
else
{
layers = LSET::AllLayersMask();
}
return BestSnapAnchor( aOrigin, layers, aGrid, item );
}
VECTOR2I PCB_GRID_HELPER::BestSnapAnchor( const VECTOR2I& aOrigin, const LSET& aLayers,
GRID_HELPER_GRIDS aGrid,
const std::vector<BOARD_ITEM*>& aSkip )
{
// Tuning constant: snap radius in screen space
const int snapSize = 25;
// Snapping distance is in screen space, clamped to the current grid to ensure that the grid
// points that are visible can always be snapped to.
// see https://gitlab.com/kicad/code/kicad/-/issues/5638
// see https://gitlab.com/kicad/code/kicad/-/issues/7125
// see https://gitlab.com/kicad/code/kicad/-/issues/12303
double snapScale = m_toolMgr->GetView()->ToWorld( snapSize );
// warning: GetVisibleGrid().x sometimes returns a value > INT_MAX. Intermediate calculation
// needs double.
int snapRange = KiROUND( m_enableGrid ? std::min( snapScale, GetVisibleGrid().x ) : snapScale );
//Respect limits of coordinates representation
const BOX2I visibilityHorizon =
BOX2ISafe( VECTOR2D( aOrigin ) - snapRange / 2.0, VECTOR2D( snapRange, snapRange ) );
clearAnchors();
const std::vector<BOARD_ITEM*> visibleItems = queryVisible( visibilityHorizon, aSkip );
computeAnchors( visibleItems, aOrigin, false, nullptr, &aLayers, false );
ANCHOR* nearest = nearestAnchor( aOrigin, SNAPPABLE );
VECTOR2I nearestGrid = Align( aOrigin, aGrid );
const int hysteresisWorld =
KiROUND( m_toolMgr->GetView()->ToWorld( ADVANCED_CFG::GetCfg().m_SnapHysteresis ) );
const int snapIn = std::max( 0, snapRange - hysteresisWorld );
const int snapOut = snapRange + hysteresisWorld;
if( KIGFX::ANCHOR_DEBUG* ad = enableAndGetAnchorDebug(); ad )
{
ad->ClearAnchors();
for( const ANCHOR& anchor : m_anchors )
ad->AddAnchor( anchor.pos );
ad->SetNearest( nearest ? OPT_VECTOR2I{ nearest->pos } : std::nullopt );
m_toolMgr->GetView()->Update( ad, KIGFX::GEOMETRY );
}
// The distance to the nearest snap point, if any
std::optional<int> snapDist;
if( nearest )
snapDist = nearest->Distance( aOrigin );
if( m_snapItem )
{
int existingDist = m_snapItem->Distance( aOrigin );
if( !snapDist || existingDist < *snapDist )
snapDist = existingDist;
}
showConstructionGeometry( m_enableSnap );
SNAP_MANAGER& snapManager = getSnapManager();
SNAP_LINE_MANAGER& snapLineManager = snapManager.GetSnapLineManager();
const auto ptIsReferenceOnly =
[&]( const VECTOR2I& aPt )
{
const std::vector<VECTOR2I>& referenceOnlyPoints = snapManager.GetReferenceOnlyPoints();
return std::find( referenceOnlyPoints.begin(), referenceOnlyPoints.end(), aPt )
!= referenceOnlyPoints.end();
};
const auto proposeConstructionForItems =
[&]( const std::vector<EDA_ITEM*>& aItems )
{
// Add any involved item as a temporary construction item
// (de-duplication with existing construction items is handled later)
std::vector<BOARD_ITEM*> items;
for( EDA_ITEM* item : aItems )
{
if( !item->IsBOARD_ITEM() )
continue;
BOARD_ITEM* boardItem = static_cast<BOARD_ITEM*>( item );
// Null items are allowed to arrive here as they represent geometry that isn't
// specifically tied to a board item. For example snap lines from some
// other anchor.
// But they don't produce new construction items.
if( boardItem )
{
if( m_magneticSettings->allLayers || ( ( aLayers & boardItem->GetLayerSet() ).any() ) )
items.push_back( boardItem );
}
}
// Temporary construction items are not persistent and don't
// overlay the items themselves (as the items will not be moved)
AddConstructionItems( items, true, false );
};
bool snapValid = false;
if( m_enableSnap )
{
// Existing snap lines need priority over new snaps
if( m_enableSnapLine )
{
OPT_VECTOR2I snapLineSnap = snapLineManager.GetNearestSnapLinePoint(
aOrigin, nearestGrid, snapDist, snapRange );
// We found a better snap point that the nearest one
if( snapLineSnap && m_skipPoint != *snapLineSnap )
{
snapLineManager.SetSnapLineEnd( *snapLineSnap );
snapValid = true;
// Don't show a snap point if we're snapping to a grid rather than an anchor
m_toolMgr->GetView()->SetVisible( &m_viewSnapPoint, false );
m_viewSnapPoint.SetSnapTypes( POINT_TYPE::PT_NONE );
// Only return the snap line end as a snap if it's not a reference point
// (we don't snap to reference points, but we can use them to update the snap line,
// without actually snapping)
if( !ptIsReferenceOnly( *snapLineSnap ) )
return *snapLineSnap;
}
}
if( m_snapItem )
{
int dist = m_snapItem->Distance( aOrigin );
if( dist <= snapOut )
{
if( nearest && ptIsReferenceOnly( nearest->pos ) &&
nearest->Distance( aOrigin ) <= snapRange )
snapLineManager.SetSnapLineOrigin( nearest->pos );
snapLineManager.SetSnappedAnchor( m_snapItem->pos );
updateSnapPoint( { m_snapItem->pos, m_snapItem->pointTypes } );
return m_snapItem->pos;
}
m_snapItem = std::nullopt;
}
// If there's a snap anchor within range, use it if we can
if( nearest && nearest->Distance( aOrigin ) <= snapIn )
{
const bool anchorIsConstructed = nearest->flags & ANCHOR_FLAGS::CONSTRUCTED;
// If the nearest anchor is a reference point, we don't snap to it,
// but we can update the snap line origin
if( ptIsReferenceOnly( nearest->pos ) )
{
// We can set the snap line origin, but don't mess with the
// accepted snap point
snapLineManager.SetSnapLineOrigin( nearest->pos );
}
else
{
// 'Intrinsic' points of items can trigger adding construction geometry
// for _that_ item by proximity. E.g. just mousing over the intersection
// of an item doesn't add a construction item for the second item).
// This is to make construction items less intrusive and more
// a result of user intent.
if( !anchorIsConstructed )
proposeConstructionForItems( nearest->items );
m_snapItem = *nearest;
// Set the snap line origin or end as needed
snapLineManager.SetSnappedAnchor( m_snapItem->pos );
// Show the correct snap point marker
updateSnapPoint( { m_snapItem->pos, m_snapItem->pointTypes } );
return m_snapItem->pos;
}
snapValid = true;
}
else
{
static const bool canActivateByHitTest = ADVANCED_CFG::GetCfg().m_ExtensionSnapActivateOnHover;
if( canActivateByHitTest )
{
// An exact hit on an item, even if not near a snap point
// If it's tool hard to hit by hover, this can be increased
// to make it non-exact.
const int hoverAccuracy = 0;
for( BOARD_ITEM* item : visibleItems )
{
if( item->HitTest( aOrigin, hoverAccuracy ) )
{
proposeConstructionForItems( { item } );
snapValid = true;
break;
}
}
}
}
// If we got here, we didn't snap to an anchor or snap line
// If we're snapping to a grid, on-element snaps would be too intrusive
// but they're useful when there isn't a grid to snap to
if( !m_enableGrid )
{
OPT_VECTOR2I nearestPointOnAnElement = GetNearestPoint( m_pointOnLineCandidates, aOrigin );
// Got any nearest point - snap if in range
if( nearestPointOnAnElement && nearestPointOnAnElement->Distance( aOrigin ) <= snapRange )
{
updateSnapPoint( { *nearestPointOnAnElement, POINT_TYPE::PT_ON_ELEMENT } );
// Clear the snap end, but keep the origin so touching another line
// doesn't kill a snap line
snapLineManager.SetSnapLineEnd( std::nullopt );
return *nearestPointOnAnElement;
}
}
}
// Completely failed to find any snap point, so snap to the grid
m_snapItem = std::nullopt;
if( !snapValid )
{
snapLineManager.ClearSnapLine();
snapManager.GetConstructionManager().CancelProposal();
}
else
{
snapLineManager.SetSnapLineEnd( std::nullopt );
}
m_toolMgr->GetView()->SetVisible( &m_viewSnapPoint, false );
return nearestGrid;
}
BOARD_ITEM* PCB_GRID_HELPER::GetSnapped() const
{
if( !m_snapItem )
return nullptr;
// The snap anchor doesn't have an item associated with it
// (odd, could it be entirely made of construction geometry?)
if( m_snapItem->items.empty() )
return nullptr;
return static_cast<BOARD_ITEM*>( m_snapItem->items[0] );
}
GRID_HELPER_GRIDS PCB_GRID_HELPER::GetItemGrid( const EDA_ITEM* aItem ) const
{
if( !aItem )
return GRID_CURRENT;
switch( aItem->Type() )
{
case PCB_FOOTPRINT_T:
case PCB_PAD_T:
return GRID_CONNECTABLE;
case PCB_TEXT_T:
case PCB_FIELD_T:
return GRID_TEXT;
case PCB_SHAPE_T:
case PCB_DIMENSION_T:
case PCB_REFERENCE_IMAGE_T:
case PCB_TEXTBOX_T:
return GRID_GRAPHICS;
case PCB_TRACE_T:
case PCB_ARC_T:
return GRID_WIRES;
case PCB_VIA_T:
return GRID_VIAS;
default:
return GRID_CURRENT;
}
}
VECTOR2D PCB_GRID_HELPER::GetGridSize( GRID_HELPER_GRIDS aGrid ) const
{
const GRID_SETTINGS& grid = m_toolMgr->GetSettings()->m_Window.grid;
int idx = -1;
VECTOR2D g = m_toolMgr->GetView()->GetGAL()->GetGridSize();
if( !grid.overrides_enabled )
return g;
switch( aGrid )
{
case GRID_CONNECTABLE:
if( grid.override_connected )
idx = grid.override_connected_idx;
break;
case GRID_WIRES:
if( grid.override_wires )
idx = grid.override_wires_idx;
break;
case GRID_VIAS:
if( grid.override_vias )
idx = grid.override_vias_idx;
break;
case GRID_TEXT:
if( grid.override_text )
idx = grid.override_text_idx;
break;
case GRID_GRAPHICS:
if( grid.override_graphics )
idx = grid.override_graphics_idx;
break;
default:
break;
}
if( idx >= 0 && idx < (int) grid.grids.size() )
g = grid.grids[idx].ToDouble( pcbIUScale );
return g;
}
std::vector<BOARD_ITEM*>
PCB_GRID_HELPER::queryVisible( const BOX2I& aArea, const std::vector<BOARD_ITEM*>& aSkip ) const
{
std::set<BOARD_ITEM*> items;
std::vector<KIGFX::VIEW::LAYER_ITEM_PAIR> visibleItems;
PCB_TOOL_BASE* currentTool = static_cast<PCB_TOOL_BASE*>( m_toolMgr->GetCurrentTool() );
KIGFX::VIEW* view = m_toolMgr->GetView();
RENDER_SETTINGS* settings = view->GetPainter()->GetSettings();
const std::set<int>& activeLayers = settings->GetHighContrastLayers();
bool isHighContrast = settings->GetHighContrast();
view->Query( aArea, visibleItems );
for( const auto& [ viewItem, layer ] : visibleItems )
{
if( !viewItem->IsBOARD_ITEM() )
continue;
BOARD_ITEM* boardItem = static_cast<BOARD_ITEM*>( viewItem );
if( currentTool->IsFootprintEditor() )
{
// If we are in the footprint editor, don't use the footprint itself
if( boardItem->Type() == PCB_FOOTPRINT_T )
continue;
}
else
{
// If we are not in the footprint editor, don't use footprint-editor-private items
if( FOOTPRINT* parentFP = boardItem->GetParentFootprint() )
{
if( IsPcbLayer( layer ) && parentFP->GetPrivateLayers().test( layer ) )
continue;
}
}
// The boardItem must be visible and on an active layer
if( view->IsVisible( boardItem )
&& ( !isHighContrast || activeLayers.count( layer ) )
&& boardItem->ViewGetLOD( layer, view ) < view->GetScale() )
{
items.insert ( boardItem );
}
}
std::function<void( BOARD_ITEM* )> skipItem =
[&]( BOARD_ITEM* aItem )
{
items.erase( aItem );
aItem->RunOnChildren(
[&]( BOARD_ITEM* aChild )
{
skipItem( aChild );
},
RECURSE_MODE::RECURSE );
};
for( BOARD_ITEM* item : aSkip )
skipItem( item );
return {items.begin(), items.end()};
}
struct PCB_INTERSECTABLE
{
BOARD_ITEM* Item;
INTERSECTABLE_GEOM Geometry;
// Clang wants this constructor
PCB_INTERSECTABLE( BOARD_ITEM* aItem, INTERSECTABLE_GEOM aSeg ) :
Item( aItem ),
Geometry( std::move( aSeg ) )
{
}
};
void PCB_GRID_HELPER::computeAnchors( const std::vector<BOARD_ITEM*>& aItems,
const VECTOR2I& aRefPos, bool aFrom,
const PCB_SELECTION_FILTER_OPTIONS* aSelectionFilter,
const LSET* aMatchLayers, bool aForDrag )
{
std::vector<PCB_INTERSECTABLE> intersectables;
// These could come from a more granular snap mode filter
// But when looking for drag points, we don't want construction geometry
const bool computeIntersections = !aForDrag;
const bool computePointsOnElements = !aForDrag;
const bool excludeGraphics = aSelectionFilter && !aSelectionFilter->graphics;
const bool excludeTracks = aSelectionFilter && !aSelectionFilter->tracks;
const auto itemIsSnappable =
[&]( const BOARD_ITEM& aItem )
{
// If we are filtering by layers, check if the item matches
if( aMatchLayers )
return m_magneticSettings->allLayers || ( ( *aMatchLayers & aItem.GetLayerSet() ).any() );
return true;
};
const auto processItem =
[&]( BOARD_ITEM& item )
{
// Don't even process the item if it doesn't match the layers
if( !itemIsSnappable( item ) )
return;
// First, add all the key points of the item itself
computeAnchors( &item, aRefPos, aFrom, aSelectionFilter );
// If we are computing intersections, construct the relevant intersectables
// Points on elements also use the intersectables.
if( computeIntersections || computePointsOnElements )
{
std::optional<INTERSECTABLE_GEOM> intersectableGeom;
if( !excludeGraphics
&& ( item.Type() == PCB_SHAPE_T || item.Type() == PCB_REFERENCE_IMAGE_T ) )
{
intersectableGeom = GetBoardIntersectable( item );
}
else if( !excludeTracks && ( item.Type() == PCB_TRACE_T || item.Type() == PCB_ARC_T ) )
{
intersectableGeom = GetBoardIntersectable( item );
}
if( intersectableGeom )
intersectables.emplace_back( &item, *intersectableGeom );
}
};
for( BOARD_ITEM* item : aItems )
{
processItem( *item );
}
for( const CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM_BATCH& batch : getSnapManager().GetConstructionItems() )
{
for( const CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM& constructionItem : batch )
{
BOARD_ITEM* involvedItem = static_cast<BOARD_ITEM*>( constructionItem.Item );
for( const KIGFX::CONSTRUCTION_GEOM::DRAWABLE& drawable : constructionItem.Constructions )
{
std::visit(
[&]( const auto& visited )
{
using ItemType = std::decay_t<decltype( visited )>;
if constexpr( std::is_same_v<ItemType, LINE>
|| std::is_same_v<ItemType, CIRCLE>
|| std::is_same_v<ItemType, HALF_LINE>
|| std::is_same_v<ItemType, SHAPE_ARC> )
{
intersectables.emplace_back( involvedItem, visited );
}
else if constexpr( std::is_same_v<ItemType, VECTOR2I> )
{
// Add any free-floating points as snap points.
addAnchor( visited, SNAPPABLE | CONSTRUCTED, involvedItem, POINT_TYPE::PT_NONE );
}
},
drawable );
}
}
}
// Now, add all the intersections between the items
// This is obviously quadratic, so performance may be a concern for large selections
// But, so far up to ~20k comparisons seems not to be an issue with run times in the ms range
// and it's usually only a handful of items.
if( computeIntersections )
{
for( std::size_t ii = 0; ii < intersectables.size(); ++ii )
{
const PCB_INTERSECTABLE& intersectableA = intersectables[ii];
for( std::size_t jj = ii + 1; jj < intersectables.size(); ++jj )
{
const PCB_INTERSECTABLE& intersectableB = intersectables[jj];
// An item and its own extension will often have intersections (as they are on top of each other),
// but they not useful points to snap to
if( intersectableA.Item == intersectableB.Item )
continue;
std::vector<VECTOR2I> intersections;
const INTERSECTION_VISITOR visitor{ intersectableA.Geometry, intersections };
std::visit( visitor, intersectableB.Geometry );
// For each intersection, add an intersection snap anchor
for( const VECTOR2I& intersection : intersections )
{
std::vector<EDA_ITEM*> items = {
intersectableA.Item,
intersectableB.Item,
};
addAnchor( intersection, SNAPPABLE | CONSTRUCTED, std::move( items ),
POINT_TYPE::PT_INTERSECTION );
}
}
}
}
// The intersectables can also be used for fall-back snapping to "point on line"
// snaps if no other snap is found
m_pointOnLineCandidates.clear();
if( computePointsOnElements )
{
// For the moment, it's trivial to make a NEARABLE from an INTERSECTABLE,
// because all INTERSECTABLEs are also NEARABLEs.
for( const PCB_INTERSECTABLE& intersectable : intersectables )
{
std::visit(
[&]( const auto& geom )
{
NEARABLE_GEOM nearable( geom );
m_pointOnLineCandidates.emplace_back( nearable );
},
intersectable.Geometry );
}
}
}
// Padstacks report a set of "unique" layers, which may each represent one or more
// "real" layers. This function takes a unique layer and checks if it applies to the
// given "real" layer.
static bool PadstackUniqueLayerAppliesToLayer( const PADSTACK& aPadStack, PCB_LAYER_ID aPadstackUniqueLayer,
const PCB_LAYER_ID aRealLayer )
{
switch( aPadStack.Mode() )
{
case PADSTACK::MODE::NORMAL:
{
// Normal mode padstacks are the same on every layer, so they'll apply to any
// "real" copper layer.
return IsCopperLayer( aRealLayer );
}
case PADSTACK::MODE::FRONT_INNER_BACK:
{
switch( aPadstackUniqueLayer )
{
case F_Cu:
case B_Cu:
// The outer-layer uhique layers only apply to those exact "real" layers
return aPadstackUniqueLayer == aRealLayer;
case PADSTACK::INNER_LAYERS:
// But the inner layers apply to any inner layer
return IsInnerCopperLayer( aRealLayer );
default:
wxFAIL_MSG( wxString::Format( "Unexpected padstack unique layer %d in FRONT_INNER_BACK mode",
aPadstackUniqueLayer ) );
break;
}
break;
}
case PADSTACK::MODE::CUSTOM:
{
// Custom modes are unique per layer, so it's 1:1
return aRealLayer == aPadstackUniqueLayer;
}
}
return false;
};
void PCB_GRID_HELPER::computeAnchors( BOARD_ITEM* aItem, const VECTOR2I& aRefPos, bool aFrom,
const PCB_SELECTION_FILTER_OPTIONS* aSelectionFilter )
{
KIGFX::VIEW* view = m_toolMgr->GetView();
RENDER_SETTINGS* settings = view->GetPainter()->GetSettings();
const std::set<int>& activeLayers = settings->GetHighContrastLayers();
const PCB_LAYER_ID activeHighContrastPrimaryLayer = settings->GetPrimaryHighContrastLayer();
bool isHighContrast = settings->GetHighContrast();
auto checkVisibility =
[&]( BOARD_ITEM* item )
{
// New moved items don't yet have view flags so VIEW will call them invisible
if( !view->IsVisible( item ) && !item->IsMoving() )
return false;
bool onActiveLayer = !isHighContrast;
bool isLODVisible = false;
for( PCB_LAYER_ID layer : item->GetLayerSet() )
{
if( !onActiveLayer && activeLayers.count( layer ) )
onActiveLayer = true;
if( !isLODVisible && item->ViewGetLOD( layer, view ) < view->GetScale() )
isLODVisible = true;
if( onActiveLayer && isLODVisible )
return true;
}
return false;
};
// As defaults, these are probably reasonable to avoid spamming key points
const KIGEOM::OVAL_KEY_POINT_FLAGS ovalKeyPointFlags = KIGEOM::OVAL_CENTER
| KIGEOM::OVAL_CAP_TIPS
| KIGEOM::OVAL_SIDE_MIDPOINTS
| KIGEOM::OVAL_CARDINAL_EXTREMES;
auto handlePadShape =
[&]( PAD* aPad, PCB_LAYER_ID aLayer )
{
addAnchor( aPad->GetPosition(), ORIGIN | SNAPPABLE, aPad, POINT_TYPE::PT_CENTER );
/// If we are getting a drag point, we don't want to center the edge of pads
if( aFrom )
return;
switch( aPad->GetShape( aLayer ) )
{
case PAD_SHAPE::CIRCLE:
{
const CIRCLE circle( aPad->ShapePos( aLayer ), aPad->GetSizeX() / 2 );
for( const TYPED_POINT2I& pt : KIGEOM::GetCircleKeyPoints( circle, false ) )
addAnchor( pt.m_point, OUTLINE | SNAPPABLE, aPad, pt.m_types );
break;
}
case PAD_SHAPE::OVAL:
{
const OVAL oval( aPad->GetSize( aLayer ), aPad->GetPosition(), aPad->GetOrientation() );
for( const TYPED_POINT2I& pt : KIGEOM::GetOvalKeyPoints( oval, ovalKeyPointFlags ) )
addAnchor( pt.m_point, OUTLINE | SNAPPABLE, aPad, pt.m_types );
break;
}
case PAD_SHAPE::RECTANGLE:
case PAD_SHAPE::TRAPEZOID:
case PAD_SHAPE::ROUNDRECT:
case PAD_SHAPE::CHAMFERED_RECT:
{
VECTOR2I half_size( aPad->GetSize( aLayer ) / 2 );
VECTOR2I trap_delta( 0, 0 );
if( aPad->GetShape( aLayer ) == PAD_SHAPE::TRAPEZOID )
trap_delta = aPad->GetDelta( aLayer ) / 2;
SHAPE_LINE_CHAIN corners;
corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x );
corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x );
corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x );
corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x );
corners.SetClosed( true );
corners.Rotate( aPad->GetOrientation() );
corners.Move( aPad->ShapePos( aLayer ) );
for( std::size_t ii = 0; ii < corners.GetSegmentCount(); ++ii )
{
const SEG& seg = corners.GetSegment( ii );
addAnchor( seg.A, OUTLINE | SNAPPABLE, aPad, POINT_TYPE::PT_CORNER );
addAnchor( seg.Center(), OUTLINE | SNAPPABLE, aPad, POINT_TYPE::PT_MID );
if( ii == corners.GetSegmentCount() - 1 )
addAnchor( seg.B, OUTLINE | SNAPPABLE, aPad, POINT_TYPE::PT_CORNER );
}
break;
}
default:
{
const auto& outline = aPad->GetEffectivePolygon( aLayer, ERROR_INSIDE );
if( !outline->IsEmpty() )
{
for( const VECTOR2I& pt : outline->Outline( 0 ).CPoints() )
addAnchor( pt, OUTLINE | SNAPPABLE, aPad );
}
break;
}
}
if( aPad->HasHole() )
{
// Holes are at the pad centre (it's the shape that may be offset)
const VECTOR2I hole_pos = aPad->GetPosition();
const VECTOR2I hole_size = aPad->GetDrillSize();
std::vector<TYPED_POINT2I> snap_pts;
if( hole_size.x == hole_size.y )
{
// Circle
const CIRCLE circle( hole_pos, hole_size.x / 2 );
snap_pts = KIGEOM::GetCircleKeyPoints( circle, true );
}
else
{
// Oval
// For now there's no way to have an off-angle hole, so this is the
// same as the pad. In future, this may not be true:
// https://gitlab.com/kicad/code/kicad/-/issues/4124
const OVAL oval( hole_size, hole_pos, aPad->GetOrientation() );
snap_pts = KIGEOM::GetOvalKeyPoints( oval, ovalKeyPointFlags );
}
for( const TYPED_POINT2I& snap_pt : snap_pts )
addAnchor( snap_pt.m_point, OUTLINE | SNAPPABLE, aPad, snap_pt.m_types );
}
};
const auto addRectPoints =
[&]( const BOX2I& aBox, EDA_ITEM& aRelatedItem )
{
const VECTOR2I topRight( aBox.GetRight(), aBox.GetTop() );
const VECTOR2I bottomLeft( aBox.GetLeft(), aBox.GetBottom() );
const SEG first( aBox.GetOrigin(), topRight );
const SEG second( topRight, aBox.GetEnd() );
const SEG third( aBox.GetEnd(), bottomLeft );
const SEG fourth( bottomLeft, aBox.GetOrigin() );
const int snapFlags = CORNER | SNAPPABLE;
addAnchor( aBox.GetCenter(), snapFlags, &aRelatedItem, POINT_TYPE::PT_CENTER );
addAnchor( first.A, snapFlags, &aRelatedItem, POINT_TYPE::PT_CORNER );
addAnchor( first.Center(), snapFlags, &aRelatedItem, POINT_TYPE::PT_MID );
addAnchor( second.A, snapFlags, &aRelatedItem, POINT_TYPE::PT_CORNER );
addAnchor( second.Center(), snapFlags, &aRelatedItem, POINT_TYPE::PT_MID );
addAnchor( third.A, snapFlags, &aRelatedItem, POINT_TYPE::PT_CORNER );
addAnchor( third.Center(), snapFlags, &aRelatedItem, POINT_TYPE::PT_MID );
addAnchor( fourth.A, snapFlags, &aRelatedItem, POINT_TYPE::PT_CORNER );
addAnchor( fourth.Center(), snapFlags, &aRelatedItem, POINT_TYPE::PT_MID );
};
const auto handleShape =
[&]( PCB_SHAPE* shape )
{
VECTOR2I start = shape->GetStart();
VECTOR2I end = shape->GetEnd();
switch( shape->GetShape() )
{
case SHAPE_T::CIRCLE:
{
const int r = ( start - end ).EuclideanNorm();
addAnchor( start, ORIGIN | SNAPPABLE, shape, POINT_TYPE::PT_CENTER );
addAnchor( start + VECTOR2I( -r, 0 ), OUTLINE | SNAPPABLE, shape, POINT_TYPE::PT_QUADRANT );
addAnchor( start + VECTOR2I( r, 0 ), OUTLINE | SNAPPABLE, shape, POINT_TYPE::PT_QUADRANT );
addAnchor( start + VECTOR2I( 0, -r ), OUTLINE | SNAPPABLE, shape, POINT_TYPE::PT_QUADRANT );
addAnchor( start + VECTOR2I( 0, r ), OUTLINE | SNAPPABLE, shape, POINT_TYPE::PT_QUADRANT );
break;
}
case SHAPE_T::ARC:
addAnchor( shape->GetStart(), CORNER | SNAPPABLE, shape, POINT_TYPE::PT_END );
addAnchor( shape->GetEnd(), CORNER | SNAPPABLE, shape, POINT_TYPE::PT_END );
addAnchor( shape->GetArcMid(), CORNER | SNAPPABLE, shape, POINT_TYPE::PT_MID );
addAnchor( shape->GetCenter(), ORIGIN | SNAPPABLE, shape, POINT_TYPE::PT_CENTER );
break;
case SHAPE_T::RECTANGLE:
{
addRectPoints( BOX2I::ByCorners( start, end ), *shape );
break;
}
case SHAPE_T::SEGMENT:
addAnchor( start, CORNER | SNAPPABLE, shape, POINT_TYPE::PT_END );
addAnchor( end, CORNER | SNAPPABLE, shape, POINT_TYPE::PT_END );
addAnchor( shape->GetCenter(), CORNER | SNAPPABLE, shape, POINT_TYPE::PT_MID );
break;
case SHAPE_T::POLY:
{
SHAPE_LINE_CHAIN lc;
lc.SetClosed( true );
std::vector<VECTOR2I> poly;
shape->DupPolyPointsList( poly );
for( const VECTOR2I& p : poly )
{
addAnchor( p, CORNER | SNAPPABLE, shape, POINT_TYPE::PT_CORNER );
lc.Append( p );
}
addAnchor( lc.NearestPoint( aRefPos ), OUTLINE, aItem );
break;
}
case SHAPE_T::BEZIER:
addAnchor( start, CORNER | SNAPPABLE, shape, POINT_TYPE::PT_END );
addAnchor( end, CORNER | SNAPPABLE, shape, POINT_TYPE::PT_END );
KI_FALLTHROUGH;
default:
addAnchor( shape->GetPosition(), ORIGIN | SNAPPABLE, shape );
break;
}
};
switch( aItem->Type() )
{
case PCB_FOOTPRINT_T:
{
FOOTPRINT* footprint = static_cast<FOOTPRINT*>( aItem );
for( PAD* pad : footprint->Pads() )
{
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->pads )
continue;
}
else
{
if( m_magneticSettings->pads != MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
continue;
}
if( !checkVisibility( pad ) )
continue;
if( !pad->GetBoundingBox().Contains( aRefPos ) )
continue;
pad->Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
if( !isHighContrast
|| PadstackUniqueLayerAppliesToLayer( pad->Padstack(), aLayer,
activeHighContrastPrimaryLayer ) )
{
handlePadShape( pad, aLayer );
}
} );
}
if( aFrom && aSelectionFilter && !aSelectionFilter->footprints )
break;
// If the cursor is not over a pad, snap to the anchor (if visible) or the center
// (if markedly different from the anchor).
VECTOR2I position = footprint->GetPosition();
VECTOR2I center = footprint->GetBoundingBox( false ).Centre();
VECTOR2I grid( GetGrid() );
if( view->IsLayerVisible( LAYER_ANCHOR ) )
addAnchor( position, ORIGIN | SNAPPABLE, footprint, POINT_TYPE::PT_CENTER );
if( ( center - position ).SquaredEuclideanNorm() > grid.SquaredEuclideanNorm() )
addAnchor( center, ORIGIN | SNAPPABLE, footprint, POINT_TYPE::PT_CENTER );
break;
}
case PCB_PAD_T:
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->pads )
break;
}
else
{
if( m_magneticSettings->pads != MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
break;
}
if( checkVisibility( aItem ) )
{
PAD* pad = static_cast<PAD*>( aItem );
pad->Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
if( !isHighContrast
|| PadstackUniqueLayerAppliesToLayer( pad->Padstack(), aLayer,
activeHighContrastPrimaryLayer ) )
{
handlePadShape( pad, aLayer );
}
} );
}
break;
case PCB_TEXTBOX_T:
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->text )
break;
}
else
{
if( !m_magneticSettings->graphics )
break;
}
if( checkVisibility( aItem ) )
handleShape( static_cast<PCB_SHAPE*>( aItem ) );
break;
case PCB_TABLE_T:
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->text )
break;
}
else
{
if( !m_magneticSettings->graphics )
break;
}
if( checkVisibility( aItem ) )
{
PCB_TABLE* table = static_cast<PCB_TABLE*>( aItem );
EDA_ANGLE drawAngle = table->GetCell( 0, 0 )->GetDrawRotation();
VECTOR2I topLeft = table->GetCell( 0, 0 )->GetCornersInSequence( drawAngle )[0];
VECTOR2I bottomLeft =
table->GetCell( table->GetRowCount() - 1, 0 )->GetCornersInSequence( drawAngle )[3];
VECTOR2I topRight = table->GetCell( 0, table->GetColCount() - 1 )->GetCornersInSequence( drawAngle )[1];
VECTOR2I bottomRight = table->GetCell( table->GetRowCount() - 1, table->GetColCount() - 1 )
->GetCornersInSequence( drawAngle )[2];
addAnchor( topLeft, CORNER | SNAPPABLE, table, POINT_TYPE::PT_END );
addAnchor( bottomLeft, CORNER | SNAPPABLE, table, POINT_TYPE::PT_END );
addAnchor( topRight, CORNER | SNAPPABLE, table, POINT_TYPE::PT_END );
addAnchor( bottomRight, CORNER | SNAPPABLE, table, POINT_TYPE::PT_END );
addAnchor( table->GetCenter(), ORIGIN, table, POINT_TYPE::PT_MID );
}
break;
case PCB_SHAPE_T:
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->graphics )
break;
}
else
{
if( !m_magneticSettings->graphics )
break;
}
if( checkVisibility( aItem ) )
handleShape( static_cast<PCB_SHAPE*>( aItem ) );
break;
case PCB_TRACE_T:
case PCB_ARC_T:
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->tracks )
break;
}
else
{
if( m_magneticSettings->tracks != MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
break;
}
if( checkVisibility( aItem ) )
{
PCB_TRACK* track = static_cast<PCB_TRACK*>( aItem );
addAnchor( track->GetStart(), CORNER | SNAPPABLE, track, POINT_TYPE::PT_END );
addAnchor( track->GetEnd(), CORNER | SNAPPABLE, track, POINT_TYPE::PT_END );
addAnchor( track->GetCenter(), ORIGIN, track, POINT_TYPE::PT_MID );
}
break;
case PCB_MARKER_T:
case PCB_TARGET_T:
case PCB_POINT_T:
addAnchor( aItem->GetPosition(), ORIGIN | CORNER | SNAPPABLE, aItem, POINT_TYPE::PT_CENTER );
break;
case PCB_VIA_T:
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->vias )
break;
}
else
{
if( m_magneticSettings->tracks != MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
break;
}
if( checkVisibility( aItem ) )
addAnchor( aItem->GetPosition(), ORIGIN | CORNER | SNAPPABLE, aItem, POINT_TYPE::PT_CENTER );
break;
case PCB_ZONE_T:
if( aFrom && aSelectionFilter && !aSelectionFilter->zones )
break;
if( checkVisibility( aItem ) )
{
const SHAPE_POLY_SET* outline = static_cast<const ZONE*>( aItem )->Outline();
SHAPE_LINE_CHAIN lc;
lc.SetClosed( true );
for( auto iter = outline->CIterateWithHoles(); iter; iter++ )
{
addAnchor( *iter, CORNER | SNAPPABLE, aItem, POINT_TYPE::PT_CORNER );
lc.Append( *iter );
}
addAnchor( lc.NearestPoint( aRefPos ), OUTLINE, aItem );
}
break;
case PCB_DIM_ALIGNED_T:
case PCB_DIM_ORTHOGONAL_T:
if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions )
break;
if( checkVisibility( aItem ) )
{
const PCB_DIM_ALIGNED* dim = static_cast<const PCB_DIM_ALIGNED*>( aItem );
addAnchor( dim->GetCrossbarStart(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetCrossbarEnd(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetEnd(), CORNER | SNAPPABLE, aItem );
}
break;
case PCB_DIM_CENTER_T:
if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions )
break;
if( checkVisibility( aItem ) )
{
const PCB_DIM_CENTER* dim = static_cast<const PCB_DIM_CENTER*>( aItem );
addAnchor( dim->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetEnd(), CORNER | SNAPPABLE, aItem );
VECTOR2I start( dim->GetStart() );
VECTOR2I radial( dim->GetEnd() - dim->GetStart() );
for( int i = 0; i < 2; i++ )
{
RotatePoint( radial, -ANGLE_90 );
addAnchor( start + radial, CORNER | SNAPPABLE, aItem );
}
}
break;
case PCB_DIM_RADIAL_T:
if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions )
break;
if( checkVisibility( aItem ) )
{
const PCB_DIM_RADIAL* radialDim = static_cast<const PCB_DIM_RADIAL*>( aItem );
addAnchor( radialDim->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( radialDim->GetEnd(), CORNER | SNAPPABLE, aItem );
addAnchor( radialDim->GetKnee(), CORNER | SNAPPABLE, aItem );
addAnchor( radialDim->GetTextPos(), CORNER | SNAPPABLE, aItem );
}
break;
case PCB_DIM_LEADER_T:
if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions )
break;
if( checkVisibility( aItem ) )
{
const PCB_DIM_LEADER* leader = static_cast<const PCB_DIM_LEADER*>( aItem );
addAnchor( leader->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( leader->GetEnd(), CORNER | SNAPPABLE, aItem );
addAnchor( leader->GetTextPos(), CORNER | SNAPPABLE, aItem );
}
break;
case PCB_FIELD_T:
case PCB_TEXT_T:
if( aFrom && aSelectionFilter && !aSelectionFilter->text )
break;
if( checkVisibility( aItem ) )
addAnchor( aItem->GetPosition(), ORIGIN, aItem );
break;
case PCB_GROUP_T:
for( BOARD_ITEM* item : static_cast<PCB_GROUP*>( aItem )->GetBoardItems() )
{
if( checkVisibility( item ) )
computeAnchors( item, aRefPos, aFrom, nullptr );
}
break;
case PCB_REFERENCE_IMAGE_T:
if( aFrom && aSelectionFilter && !aSelectionFilter->graphics )
break;
if( checkVisibility( aItem ) )
{
const PCB_REFERENCE_IMAGE& image = static_cast<const PCB_REFERENCE_IMAGE&>( *aItem );
const REFERENCE_IMAGE& refImg = image.GetReferenceImage();
const BOX2I bbox = refImg.GetBoundingBox();
addRectPoints( bbox, *aItem );
if( refImg.GetTransformOriginOffset() != VECTOR2I( 0, 0 ) )
{
addAnchor( aItem->GetPosition() + refImg.GetTransformOriginOffset(), ORIGIN,
aItem, POINT_TYPE::PT_CENTER );
}
}
break;
default:
break;
}
}
PCB_GRID_HELPER::ANCHOR* PCB_GRID_HELPER::nearestAnchor( const VECTOR2I& aPos, int aFlags )
{
// Do this all in squared distances as we only care about relative distances
using ecoord = VECTOR2I::extended_type;
ecoord minDist = std::numeric_limits<ecoord>::max();
std::vector<ANCHOR*> anchorsAtMinDistance;
for( ANCHOR& anchor : m_anchors )
{
// There is no need to filter by layers here, as the items are already filtered
// by layer (if needed) when the anchors are computed.
if( ( aFlags & anchor.flags ) != aFlags )
continue;
if( !anchorsAtMinDistance.empty() && anchor.pos == anchorsAtMinDistance.front()->pos )
{
// Same distance as the previous best anchor
anchorsAtMinDistance.push_back( &anchor );
}
else
{
const double dist = anchor.pos.SquaredDistance( aPos );
if( dist < minDist )
{
// New minimum distance
minDist = dist;
anchorsAtMinDistance.clear();
anchorsAtMinDistance.push_back( &anchor );
}
}
}
// Check that any involved real items are 'active'
// (i.e. the user has moused over a key point previously)
// If any are not real (e.g. snap lines), they are allowed to be involved
//
// This is an area most likely to be controversial/need tuning,
// as some users will think it's fiddly; without 'activation', others will
// think the snaps are intrusive.
SNAP_MANAGER& snapManager = getSnapManager();
const auto noRealItemsInAnchorAreInvolved = [&]( ANCHOR* aAnchor ) -> bool
{
// If no extension snaps are enabled, don't inhibit
static const bool haveExtensions = ADVANCED_CFG::GetCfg().m_EnableExtensionSnaps;
if( !haveExtensions )
return false;
// If the anchor is not constructed, it may be involved (because it is one
// of the nearest anchors). The items will only be activated later, but don't
// discard the anchor yet.
const bool anchorIsConstructed = aAnchor->flags & ANCHOR_FLAGS::CONSTRUCTED;
if( !anchorIsConstructed )
return false;
bool allRealAreInvolved = snapManager.GetConstructionManager().InvolvesAllGivenRealItems( aAnchor->items );
return !allRealAreInvolved;
};
// Trim out items that aren't involved
std::erase_if( anchorsAtMinDistance, noRealItemsInAnchorAreInvolved );
// More than one anchor can be at the same distance, for example
// two lines end-to-end each have the same endpoint anchor.
// So, check which one has an involved item that's closest to the origin,
// and use that one (which allows the user to choose which items
// gets extended - it's the one nearest the cursor)
ecoord minDistToItem = std::numeric_limits<ecoord>::max();
ANCHOR* best = nullptr;
// One of the anchors at the minimum distance
for( ANCHOR* const anchor : anchorsAtMinDistance )
{
ecoord distToNearestItem = std::numeric_limits<ecoord>::max();
for( EDA_ITEM* const item : anchor->items )
{
if( !item || !item->IsBOARD_ITEM() )
continue;
std::optional<ecoord> distToThisItem =
FindSquareDistanceToItem( static_cast<const BOARD_ITEM&>( *item ), aPos );
if( distToThisItem )
distToNearestItem = std::min( distToNearestItem, *distToThisItem );
}
// If the item doesn't have any special min-dist handler,
// just use the distance to the anchor
distToNearestItem = std::min( distToNearestItem, minDist );
if( distToNearestItem < minDistToItem )
{
minDistToItem = distToNearestItem;
best = anchor;
}
}
return best;
}