kicad-source/pcbnew/class_zone.cpp
Jeff Young b99ea159c8 Rationalize select menu texts.
Be consistent with order, formatting, etc.
Remove debug stuff such as zone timestamp and net code.
Clean up misleading pad messages.

(cherry picked from commit 2132109)
2018-07-17 15:09:48 +01:00

1360 lines
39 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2017 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file class_zone.cpp
* @brief Implementation of class to handle copper zones.
*/
#include <fctsys.h>
#include <trigo.h>
#include <pcb_screen.h>
#include <class_drawpanel.h>
#include <kicad_string.h>
#include <richio.h>
#include <macros.h>
#include <pcb_base_frame.h>
#include <msgpanel.h>
#include <bitmaps.h>
#include <convert_to_biu.h>
#include <class_board.h>
#include <class_zone.h>
#include <pcbnew.h>
#include <zones.h>
#include <math_for_graphics.h>
#include <polygon_test_point_inside.h>
ZONE_CONTAINER::ZONE_CONTAINER( BOARD* aBoard ) :
BOARD_CONNECTED_ITEM( aBoard, PCB_ZONE_AREA_T )
{
m_CornerSelection = nullptr; // no corner is selected
m_IsFilled = false; // fill status : true when the zone is filled
m_FillMode = ZFM_POLYGONS;
m_hatchStyle = DIAGONAL_EDGE;
m_hatchPitch = GetDefaultHatchPitch();
m_hv45 = false;
m_priority = 0;
m_cornerSmoothingType = ZONE_SETTINGS::SMOOTHING_NONE;
SetIsKeepout( false );
SetDoNotAllowCopperPour( false ); // has meaning only if m_isKeepout == true
SetDoNotAllowVias( true ); // has meaning only if m_isKeepout == true
SetDoNotAllowTracks( true ); // has meaning only if m_isKeepout == true
m_cornerRadius = 0;
SetLocalFlags( 0 ); // flags tempoarry used in zone calculations
m_Poly = new SHAPE_POLY_SET(); // Outlines
aBoard->GetZoneSettings().ExportSetting( *this );
}
ZONE_CONTAINER::ZONE_CONTAINER( const ZONE_CONTAINER& aZone ) :
BOARD_CONNECTED_ITEM( aZone )
{
// Should the copy be on the same net?
SetNetCode( aZone.GetNetCode() );
m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly );
// For corner moving, corner index to drag, or nullptr if no selection
m_CornerSelection = nullptr;
m_IsFilled = aZone.m_IsFilled;
m_ZoneClearance = aZone.m_ZoneClearance; // clearance value
m_ZoneMinThickness = aZone.m_ZoneMinThickness;
m_FillMode = aZone.m_FillMode; // Filling mode (segments/polygons)
m_hv45 = aZone.m_hv45;
m_priority = aZone.m_priority;
m_ArcToSegmentsCount = aZone.m_ArcToSegmentsCount;
m_PadConnection = aZone.m_PadConnection;
m_ThermalReliefGap = aZone.m_ThermalReliefGap;
m_ThermalReliefCopperBridge = aZone.m_ThermalReliefCopperBridge;
m_FilledPolysList.Append( aZone.m_FilledPolysList );
m_FillSegmList = aZone.m_FillSegmList; // vector <> copy
m_isKeepout = aZone.m_isKeepout;
m_doNotAllowCopperPour = aZone.m_doNotAllowCopperPour;
m_doNotAllowVias = aZone.m_doNotAllowVias;
m_doNotAllowTracks = aZone.m_doNotAllowTracks;
m_cornerSmoothingType = aZone.m_cornerSmoothingType;
m_cornerRadius = aZone.m_cornerRadius;
m_hatchStyle = aZone.m_hatchStyle;
m_hatchPitch = aZone.m_hatchPitch;
m_HatchLines = aZone.m_HatchLines;
SetLayerSet( aZone.GetLayerSet() );
SetLocalFlags( aZone.GetLocalFlags() );
}
ZONE_CONTAINER& ZONE_CONTAINER::operator=( const ZONE_CONTAINER& aOther )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
// Replace the outlines for aOther outlines.
delete m_Poly;
m_Poly = new SHAPE_POLY_SET( *aOther.m_Poly );
m_CornerSelection = nullptr; // for corner moving, corner index to (null if no selection)
m_ZoneClearance = aOther.m_ZoneClearance; // clearance value
m_ZoneMinThickness = aOther.m_ZoneMinThickness;
m_FillMode = aOther.m_FillMode; // filling mode (segments/polygons)
m_ArcToSegmentsCount = aOther.m_ArcToSegmentsCount;
m_PadConnection = aOther.m_PadConnection;
m_ThermalReliefGap = aOther.m_ThermalReliefGap;
m_ThermalReliefCopperBridge = aOther.m_ThermalReliefCopperBridge;
SetHatchStyle( aOther.GetHatchStyle() );
SetHatchPitch( aOther.GetHatchPitch() );
m_HatchLines = aOther.m_HatchLines; // copy vector <SEG>
m_FilledPolysList.RemoveAllContours();
m_FilledPolysList.Append( aOther.m_FilledPolysList );
m_FillSegmList.clear();
m_FillSegmList = aOther.m_FillSegmList;
SetLayerSet( aOther.GetLayerSet() );
return *this;
}
ZONE_CONTAINER::~ZONE_CONTAINER()
{
delete m_Poly;
delete m_CornerSelection;
}
EDA_ITEM* ZONE_CONTAINER::Clone() const
{
return new ZONE_CONTAINER( *this );
}
bool ZONE_CONTAINER::UnFill()
{
bool change = ( !m_FilledPolysList.IsEmpty() ) ||
( m_FillSegmList.size() > 0 );
m_FilledPolysList.RemoveAllContours();
m_FillSegmList.clear();
m_IsFilled = false;
return change;
}
const wxPoint ZONE_CONTAINER::GetPosition() const
{
return (wxPoint) GetCornerPosition( 0 );
}
PCB_LAYER_ID ZONE_CONTAINER::GetLayer() const
{
return BOARD_ITEM::GetLayer();
}
bool ZONE_CONTAINER::IsOnCopperLayer() const
{
if( GetIsKeepout() )
{
return ( m_layerSet & LSET::AllCuMask() ).count() > 0;
}
else
{
return IsCopperLayer( GetLayer() );
}
}
bool ZONE_CONTAINER::CommonLayerExists( const LSET aLayerSet ) const
{
LSET common = GetLayerSet() & aLayerSet;
return common.count() > 0;
}
void ZONE_CONTAINER::SetLayer( PCB_LAYER_ID aLayer )
{
SetLayerSet( LSET( aLayer ) );
m_Layer = aLayer;
}
void ZONE_CONTAINER::SetLayerSet( LSET aLayerSet )
{
if( GetIsKeepout() )
{
// Keepouts can only exist on copper layers
aLayerSet &= LSET::AllCuMask();
}
if( aLayerSet.count() == 0 )
{
return;
}
m_layerSet = aLayerSet;
// Set the single layer to the first selected layer
m_Layer = aLayerSet.Seq()[0];
}
LSET ZONE_CONTAINER::GetLayerSet() const
{
// TODO - Enable multi-layer zones for all zone types
// not just keepout zones
if( GetIsKeepout() )
{
return m_layerSet;
}
else
{
return LSET( m_Layer );
}
}
void ZONE_CONTAINER::ViewGetLayers( int aLayers[], int& aCount ) const
{
if( GetIsKeepout() )
{
LSEQ layers = m_layerSet.Seq();
for( unsigned int idx = 0; idx < layers.size(); idx++ )
{
aLayers[idx] = layers[idx];
}
aCount = layers.size();
}
else
{
aLayers[0] = m_Layer;
aCount = 1;
}
}
bool ZONE_CONTAINER::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
if( GetIsKeepout() )
{
return m_layerSet.test( aLayer );
}
return BOARD_ITEM::IsOnLayer( aLayer );
}
void ZONE_CONTAINER::Draw( EDA_DRAW_PANEL* panel, wxDC* DC, GR_DRAWMODE aDrawMode,
const wxPoint& offset )
{
if( !DC )
return;
wxPoint seg_start, seg_end;
PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
BOARD* brd = GetBoard();
auto frame = static_cast<PCB_BASE_FRAME*> ( panel->GetParent() );
PCB_LAYER_ID draw_layer = UNDEFINED_LAYER;
LSET layers = GetLayerSet() & brd->GetVisibleLayers();
// If there are no visible layers and the zone is not highlighted, return
if( layers.count() == 0 && !( aDrawMode & GR_HIGHLIGHT ) )
{
return;
}
/* Keepout zones can exist on multiple layers
* Thus, determining which color to use to render them is a bit tricky.
* In descending order of priority:
*
* 1. If in GR_HIGHLIGHT mode:
* a. If zone is on selected layer, use layer color!
* b. Else, use grey
* 1. Not in GR_HIGHLIGHT mode
* a. If zone is on selected layer, use layer color
* b. Else, use color of top-most (visible) layer
*
*/
if( GetIsKeepout() )
{
// At least one layer must be provided!
assert( GetLayerSet().count() > 0 );
// Not on any visible layer?
if( layers.count() == 0 && !( aDrawMode & GR_HIGHLIGHT ) )
{
return;
}
// Is keepout zone present on the selected layer?
if( layers.test( curr_layer ) )
{
draw_layer = curr_layer;
}
else
{
// Select the first (top) visible layer
if( layers.count() > 0 )
{
draw_layer = layers.Seq()[0];
}
else
{
draw_layer = GetLayerSet().Seq()[0];
}
}
}
/* Non-keepout zones are easier to deal with
*/
else
{
if( brd->IsLayerVisible( GetLayer() ) == false && !( aDrawMode & GR_HIGHLIGHT ) )
{
return;
}
draw_layer = GetLayer();
}
assert( draw_layer != UNDEFINED_LAYER );
auto color = frame->Settings().Colors().GetLayerColor( draw_layer );
GRSetDrawMode( DC, aDrawMode );
auto displ_opts = (PCB_DISPLAY_OPTIONS*)( panel->GetDisplayOptions() );
if( displ_opts->m_ContrastModeDisplay )
{
if( !IsOnLayer( curr_layer ) )
{
color = COLOR4D( DARKDARKGRAY );
}
}
if( ( aDrawMode & GR_HIGHLIGHT ) && !( aDrawMode & GR_AND ) )
{
color.SetToLegacyHighlightColor();
}
color.a = 0.588;
// draw the lines
std::vector<wxPoint> lines;
lines.reserve( (GetNumCorners() * 2) + 2 );
// Iterate through the segments of the outline
for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ )
{
// Create the segment
SEG segment = *iterator;
lines.push_back( static_cast<wxPoint>( segment.A ) + offset );
lines.push_back( static_cast<wxPoint>( segment.B ) + offset );
}
GRLineArray( panel->GetClipBox(), DC, lines, 0, color );
// draw hatches
lines.clear();
lines.reserve( (m_HatchLines.size() * 2) + 2 );
for( unsigned ic = 0; ic < m_HatchLines.size(); ic++ )
{
seg_start = static_cast<wxPoint>( m_HatchLines[ic].A ) + offset;
seg_end = static_cast<wxPoint>( m_HatchLines[ic].B ) + offset;
lines.push_back( seg_start );
lines.push_back( seg_end );
}
GRLineArray( panel->GetClipBox(), DC, lines, 0, color );
}
void ZONE_CONTAINER::DrawFilledArea( EDA_DRAW_PANEL* panel,
wxDC* DC, GR_DRAWMODE aDrawMode, const wxPoint& offset )
{
static std::vector <wxPoint> CornersBuffer;
auto displ_opts = (PCB_DISPLAY_OPTIONS*)( panel->GetDisplayOptions() );
// outline_mode is false to show filled polys,
// and true to show polygons outlines only (test and debug purposes)
bool outline_mode = displ_opts->m_DisplayZonesMode == 2 ? true : false;
if( DC == NULL )
return;
if( displ_opts->m_DisplayZonesMode == 1 ) // Do not show filled areas
return;
if( m_FilledPolysList.IsEmpty() ) // Nothing to draw
return;
BOARD* brd = GetBoard();
PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
auto frame = static_cast<PCB_BASE_FRAME*> ( panel->GetParent() );
auto color = frame->Settings().Colors().GetLayerColor( GetLayer() );
if( brd->IsLayerVisible( GetLayer() ) == false && !( aDrawMode & GR_HIGHLIGHT ) )
return;
GRSetDrawMode( DC, aDrawMode );
if( displ_opts->m_ContrastModeDisplay )
{
if( !IsOnLayer( curr_layer ) )
color = COLOR4D( DARKDARKGRAY );
}
if( ( aDrawMode & GR_HIGHLIGHT ) && !( aDrawMode & GR_AND ) )
color.SetToLegacyHighlightColor();
color.a = 0.588;
for ( int ic = 0; ic < m_FilledPolysList.OutlineCount(); ic++ )
{
const SHAPE_LINE_CHAIN& path = m_FilledPolysList.COutline( ic );
CornersBuffer.clear();
wxPoint p0;
for( int j = 0; j < path.PointCount(); j++ )
{
const VECTOR2I& corner = path.CPoint( j );
wxPoint coord( corner.x + offset.x, corner.y + offset.y );
if( j == 0 )
p0 = coord;
CornersBuffer.push_back( coord );
}
CornersBuffer.push_back( p0 );
// Draw outlines:
if( ( m_ZoneMinThickness > 1 ) || outline_mode )
{
int ilim = CornersBuffer.size() - 1;
for( int is = 0, ie = ilim; is <= ilim; ie = is, is++ )
{
int x0 = CornersBuffer[is].x;
int y0 = CornersBuffer[is].y;
int x1 = CornersBuffer[ie].x;
int y1 = CornersBuffer[ie].y;
// Draw only basic outlines, not extra segments.
if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) )
GRCSegm( panel->GetClipBox(), DC,
x0, y0, x1, y1,
m_ZoneMinThickness, color );
else
GRFillCSegm( panel->GetClipBox(), DC,
x0, y0, x1, y1, m_ZoneMinThickness, color );
}
}
// Draw areas:
if( m_FillMode == ZFM_POLYGONS && !outline_mode )
GRPoly( panel->GetClipBox(), DC, CornersBuffer.size(), &CornersBuffer[0],
true, 0, color, color );
}
if( m_FillMode == 1 && !outline_mode ) // filled with segments
{
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{
wxPoint start = (wxPoint) ( m_FillSegmList[ic].A + VECTOR2I(offset) );
wxPoint end = (wxPoint) ( m_FillSegmList[ic].B + VECTOR2I(offset) );
if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) )
GRCSegm( panel->GetClipBox(), DC, start.x, start.y, end.x, end.y,
m_ZoneMinThickness, color );
else
GRFillCSegm( panel->GetClipBox(), DC, start.x, start.y, end.x, end.y,
m_ZoneMinThickness, color );
}
}
}
const EDA_RECT ZONE_CONTAINER::GetBoundingBox() const
{
const int PRELOAD = 0x7FFFFFFF; // Biggest integer (32 bits)
int ymax = -PRELOAD;
int ymin = PRELOAD;
int xmin = PRELOAD;
int xmax = -PRELOAD;
int count = GetNumCorners();
for( int i = 0; i<count; ++i )
{
wxPoint corner = static_cast<wxPoint>( GetCornerPosition( i ) );
ymax = std::max( ymax, corner.y );
xmax = std::max( xmax, corner.x );
ymin = std::min( ymin, corner.y );
xmin = std::min( xmin, corner.x );
}
EDA_RECT ret( wxPoint( xmin, ymin ), wxSize( xmax - xmin + 1, ymax - ymin + 1 ) );
return ret;
}
void ZONE_CONTAINER::DrawWhileCreateOutline( EDA_DRAW_PANEL* panel, wxDC* DC,
GR_DRAWMODE draw_mode )
{
GR_DRAWMODE current_gr_mode = draw_mode;
bool is_close_segment = false;
if( !DC )
return;
PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
auto frame = static_cast<PCB_BASE_FRAME*> ( panel->GetParent() );
auto color = frame->Settings().Colors().GetLayerColor( GetLayer() );
auto displ_opts = (PCB_DISPLAY_OPTIONS*)( panel->GetDisplayOptions() );
if( displ_opts->m_ContrastModeDisplay )
{
if( !IsOnLayer( curr_layer ) )
color = COLOR4D( DARKDARKGRAY );
}
// Object to iterate through the corners of the outlines
SHAPE_POLY_SET::ITERATOR iterator = m_Poly->Iterate();
// Segment start and end
VECTOR2I seg_start, seg_end;
// Remember the first point of this contour
VECTOR2I contour_first_point = *iterator;
// Iterate through all the corners of the outlines and build the segments to draw
while( iterator )
{
// Get the first point of the current segment
seg_start = *iterator;
// Get the last point of the current segment, handling the case where the end of the
// contour is reached, when the last point of the segment is the first point of the
// contour
if( !iterator.IsEndContour() )
{
// Set GR mode to default
current_gr_mode = draw_mode;
SHAPE_POLY_SET::ITERATOR iterator_copy = iterator;
iterator_copy++;
if( iterator_copy.IsEndContour() )
current_gr_mode = GR_XOR;
is_close_segment = false;
iterator++;
seg_end = *iterator;
}
else
{
is_close_segment = true;
seg_end = contour_first_point;
// Reassign first point of the contour to the next contour start
iterator++;
if( iterator )
contour_first_point = *iterator;
// Set GR mode to XOR
current_gr_mode = GR_XOR;
}
GRSetDrawMode( DC, current_gr_mode );
if( is_close_segment )
GRLine( panel->GetClipBox(), DC, seg_start.x, seg_start.y, seg_end.x, seg_end.y, 0,
WHITE );
else
GRLine( panel->GetClipBox(), DC, seg_start.x, seg_start.y, seg_end.x, seg_end.y, 0,
color );
}
}
int ZONE_CONTAINER::GetThermalReliefGap( D_PAD* aPad ) const
{
if( aPad == NULL || aPad->GetThermalGap() == 0 )
return m_ThermalReliefGap;
else
return aPad->GetThermalGap();
}
int ZONE_CONTAINER::GetThermalReliefCopperBridge( D_PAD* aPad ) const
{
if( aPad == NULL || aPad->GetThermalWidth() == 0 )
return m_ThermalReliefCopperBridge;
else
return aPad->GetThermalWidth();
}
void ZONE_CONTAINER::SetCornerRadius( unsigned int aRadius )
{
m_cornerRadius = aRadius;
if( m_cornerRadius > (unsigned int) Mils2iu( MAX_ZONE_CORNER_RADIUS_MILS ) )
m_cornerRadius = Mils2iu( MAX_ZONE_CORNER_RADIUS_MILS );
}
bool ZONE_CONTAINER::HitTest( const wxPoint& aPosition ) const
{
return HitTestForCorner( aPosition ) || HitTestForEdge( aPosition );
}
void ZONE_CONTAINER::SetSelectedCorner( const wxPoint& aPosition )
{
SHAPE_POLY_SET::VERTEX_INDEX corner;
// If there is some corner to be selected, assign it to m_CornerSelection
if( HitTestForCorner( aPosition, corner ) || HitTestForEdge( aPosition, corner ) )
{
if( m_CornerSelection == nullptr )
m_CornerSelection = new SHAPE_POLY_SET::VERTEX_INDEX;
*m_CornerSelection = corner;
}
}
// Zones outlines have no thickness, so it Hit Test functions
// we must have a default distance between the test point
// and a corner or a zone edge:
#define MAX_DIST_IN_MM 0.25
bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos,
SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const
{
int distmax = Millimeter2iu( MAX_DIST_IN_MM );
return m_Poly->CollideVertex( VECTOR2I( refPos ), aCornerHit, distmax );
}
bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos ) const
{
SHAPE_POLY_SET::VERTEX_INDEX dummy;
return HitTestForCorner( refPos, dummy );
}
bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos,
SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const
{
int distmax = Millimeter2iu( MAX_DIST_IN_MM );
return m_Poly->CollideEdge( VECTOR2I( refPos ), aCornerHit, distmax );
}
bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos ) const
{
SHAPE_POLY_SET::VERTEX_INDEX dummy;
return HitTestForEdge( refPos, dummy );
}
bool ZONE_CONTAINER::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
// Calculate bounding box for zone
EDA_RECT bbox = GetBoundingBox();
bbox.Normalize();
EDA_RECT arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
if( aContained )
{
return arect.Contains( bbox );
}
else // Test for intersection between aBox and the polygon
// For a polygon, using its bounding box has no sense here
{
// Fast test: if aBox is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bbox ) )
return false;
// aBox is inside the polygon bounding box,
// and can intersect the polygon: use a fine test.
// aBox intersects the polygon if at least one aBox corner
// is inside the polygon
/*
wxPoint origin = arect.GetOrigin();
int w = arect.GetWidth();
int h = arect.GetHeight();
if ( HitTestInsideZone( origin ) ||
HitTestInsideZone( origin + wxPoint( w, 0 ) ) ||
HitTestInsideZone( origin + wxPoint( w, h ) ) ||
HitTestInsideZone( origin + wxPoint( 0, h ) ) )
{
return true;
}
*/
// No corner inside aBox, but outlines can intersect aBox
// if one of outline corners is inside aBox
int count = m_Poly->TotalVertices();
for( int ii =0; ii < count; ii++ )
{
auto vertex = m_Poly->Vertex( ii );
auto vertexNext = m_Poly->Vertex( ( ii + 1 ) % count );
// Test if the point is within the rect
if( arect.Contains( ( wxPoint ) vertex ) )
{
return true;
}
// Test if this edge intersects the rect
if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) )
{
return true;
}
}
return false;
}
}
int ZONE_CONTAINER::GetClearance( BOARD_CONNECTED_ITEM* aItem ) const
{
int myClearance = m_ZoneClearance;
#if 1 // Maybe the netclass clearance should not come into play for a zone?
// At least the policy decision can be controlled by the zone
// itself, i.e. here. On reasons of insufficient documentation,
// the user will be less bewildered if we simply respect the
// "zone clearance" setting in the zone properties dialog. (At least
// until there is a UI boolean for this.)
NETCLASSPTR myClass = GetNetClass();
if( myClass )
myClearance = std::max( myClearance, myClass->GetClearance() );
#endif
if( aItem )
{
int hisClearance = aItem->GetClearance( NULL );
myClearance = std::max( hisClearance, myClearance );
}
return myClearance;
}
bool ZONE_CONTAINER::HitTestFilledArea( const wxPoint& aRefPos ) const
{
return m_FilledPolysList.Contains( VECTOR2I( aRefPos.x, aRefPos.y ) );
}
void ZONE_CONTAINER::GetMsgPanelInfo( std::vector< MSG_PANEL_ITEM >& aList )
{
wxString msg;
msg = _( "Zone Outline" );
// Display Cutout instead of Outline for holes inside a zone
// i.e. when num contour !=0
// Check whether the selected corner is in a hole; i.e., in any contour but the first one.
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 )
msg << wxT( " " ) << _( "(Cutout)" );
aList.push_back( MSG_PANEL_ITEM( _( "Type" ), msg, DARKCYAN ) );
if( GetIsKeepout() )
{
msg.Empty();
if( GetDoNotAllowVias() )
AccumulateDescription( msg, _( "No via" ) );
if( GetDoNotAllowTracks() )
AccumulateDescription( msg, _("No track") );
if( GetDoNotAllowCopperPour() )
AccumulateDescription( msg, _("No copper pour") );
aList.push_back( MSG_PANEL_ITEM( _( "Keepout" ), msg, RED ) );
}
else if( IsOnCopperLayer() )
{
if( GetNetCode() >= 0 )
{
NETINFO_ITEM* net = GetNet();
if( net )
msg = net->GetNetname();
else // Should not occur
msg = _( "<unknown>" );
}
else // a netcode < 0 is an error
msg = wxT( "<error>" );
aList.push_back( MSG_PANEL_ITEM( _( "NetName" ), msg, RED ) );
// Display net code : (useful in test or debug)
msg.Printf( wxT( "%d" ), GetNetCode() );
aList.push_back( MSG_PANEL_ITEM( _( "NetCode" ), msg, RED ) );
// Display priority level
msg.Printf( wxT( "%d" ), GetPriority() );
aList.push_back( MSG_PANEL_ITEM( _( "Priority" ), msg, BLUE ) );
}
else
{
aList.push_back( MSG_PANEL_ITEM( _( "Non Copper Zone" ), wxEmptyString, RED ) );
}
aList.push_back( MSG_PANEL_ITEM( _( "Layer" ), GetLayerName(), BROWN ) );
msg.Printf( wxT( "%d" ), (int) m_Poly->TotalVertices() );
aList.push_back( MSG_PANEL_ITEM( _( "Corners" ), msg, BLUE ) );
if( m_FillMode )
msg = _( "Segments" );
else
msg = _( "Polygons" );
aList.push_back( MSG_PANEL_ITEM( _( "Fill Mode" ), msg, BROWN ) );
// Useful for statistics :
msg.Printf( wxT( "%d" ), (int) m_HatchLines.size() );
aList.push_back( MSG_PANEL_ITEM( _( "Hatch Lines" ), msg, BLUE ) );
if( !m_FilledPolysList.IsEmpty() )
{
msg.Printf( wxT( "%d" ), m_FilledPolysList.TotalVertices() );
aList.push_back( MSG_PANEL_ITEM( _( "Corner Count" ), msg, BLUE ) );
}
}
/* Geometric transforms: */
void ZONE_CONTAINER::Move( const wxPoint& offset )
{
/* move outlines */
m_Poly->Move( VECTOR2I( offset ) );
Hatch();
m_FilledPolysList.Move( VECTOR2I( offset.x, offset.y ) );
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{
m_FillSegmList[ic].A += VECTOR2I(offset);
m_FillSegmList[ic].B += VECTOR2I(offset);
}
}
void ZONE_CONTAINER::MoveEdge( const wxPoint& offset, int aEdge )
{
int next_corner;
if( m_Poly->GetNeighbourIndexes( aEdge, nullptr, &next_corner ) )
{
m_Poly->Vertex( aEdge ) += VECTOR2I( offset );
m_Poly->Vertex( next_corner ) += VECTOR2I( offset );
Hatch();
}
}
void ZONE_CONTAINER::Rotate( const wxPoint& centre, double angle )
{
wxPoint pos;
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ )
{
pos = static_cast<wxPoint>( *iterator );
RotatePoint( &pos, centre, angle );
iterator->x = pos.x;
iterator->y = pos.y;
}
Hatch();
/* rotate filled areas: */
for( auto ic = m_FilledPolysList.Iterate(); ic; ++ic )
RotatePoint( &ic->x, &ic->y, centre.x, centre.y, angle );
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{
wxPoint a( m_FillSegmList[ic].A );
RotatePoint( &a, centre, angle );
m_FillSegmList[ic].A = a;
wxPoint b( m_FillSegmList[ic].B );
RotatePoint( &b, centre, angle );
m_FillSegmList[ic].B = a;
}
}
void ZONE_CONTAINER::Flip( const wxPoint& aCentre )
{
Mirror( aCentre );
int copperLayerCount = GetBoard()->GetCopperLayerCount();
if( GetIsKeepout() )
{
SetLayerSet( FlipLayerMask( GetLayerSet(), copperLayerCount ) );
}
else
{
SetLayer( FlipLayer( GetLayer(), copperLayerCount ) );
}
}
void ZONE_CONTAINER::Mirror( const wxPoint& mirror_ref )
{
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ )
{
int py = mirror_ref.y - iterator->y;
iterator->y = py + mirror_ref.y;
}
Hatch();
for( auto ic = m_FilledPolysList.Iterate(); ic; ++ic )
{
int py = mirror_ref.y - ic->y;
ic->y = py + mirror_ref.y;
}
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{
MIRROR( m_FillSegmList[ic].A.y, mirror_ref.y );
MIRROR( m_FillSegmList[ic].B.y, mirror_ref.y );
}
}
ZoneConnection ZONE_CONTAINER::GetPadConnection( D_PAD* aPad ) const
{
if( aPad == NULL || aPad->GetZoneConnection() == PAD_ZONE_CONN_INHERITED )
return m_PadConnection;
else
return aPad->GetZoneConnection();
}
void ZONE_CONTAINER::AddPolygon( std::vector< wxPoint >& aPolygon )
{
if( aPolygon.empty() )
return;
SHAPE_LINE_CHAIN outline;
// Create an outline and populate it with the points of aPolygon
for( unsigned i = 0; i < aPolygon.size(); i++ )
{
outline.Append( VECTOR2I( aPolygon[i] ) );
}
outline.SetClosed( true );
// Add the outline as a new polygon in the polygon set
if( m_Poly->OutlineCount() == 0 )
m_Poly->AddOutline( outline );
else
m_Poly->AddHole( outline );
}
bool ZONE_CONTAINER::AppendCorner( wxPoint aPosition, int aHoleIdx, bool aAllowDuplication )
{
// Ensure the main outline exists:
if( m_Poly->OutlineCount() == 0 )
m_Poly->NewOutline();
// If aHoleIdx >= 0, the corner musty be added to the hole, index aHoleIdx.
// (remember: the index of the first hole is 0)
// Return error if if does dot exist.
if( aHoleIdx >= m_Poly->HoleCount( 0 ) )
return false;
m_Poly->Append( aPosition.x, aPosition.y, -1, aHoleIdx, aAllowDuplication );
return true;
}
wxString ZONE_CONTAINER::GetSelectMenuText() const
{
wxString text;
// Check whether the selected contour is a hole (contour index > 0)
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 )
text << wxT( " " ) << _( "(Cutout)" );
if( GetIsKeepout() )
text << wxT( " " ) << _( "(Keepout)" );
else
text << GetNetnameMsg();
wxString msg;
msg.Printf( _( "Zone Outline %s on %s" ),
GetChars( text ),
GetChars( GetLayerName() ) );
return msg;
}
int ZONE_CONTAINER::GetHatchPitch() const
{
return m_hatchPitch;
}
void ZONE_CONTAINER::SetHatch( int aHatchStyle, int aHatchPitch, bool aRebuildHatch )
{
SetHatchPitch( aHatchPitch );
m_hatchStyle = (ZONE_CONTAINER::HATCH_STYLE) aHatchStyle;
if( aRebuildHatch )
Hatch();
}
void ZONE_CONTAINER::SetHatchPitch( int aPitch )
{
m_hatchPitch = aPitch;
}
void ZONE_CONTAINER::UnHatch()
{
m_HatchLines.clear();
}
// Creates hatch lines inside the outline of the complex polygon
// sort function used in ::Hatch to sort points by descending wxPoint.x values
bool sortEndsByDescendingX( const VECTOR2I& ref, const VECTOR2I& tst )
{
return tst.x < ref.x;
}
void ZONE_CONTAINER::Hatch()
{
UnHatch();
if( m_hatchStyle == NO_HATCH || m_hatchPitch == 0 || m_Poly->IsEmpty() )
return;
// define range for hatch lines
int min_x = m_Poly->Vertex( 0 ).x;
int max_x = m_Poly->Vertex( 0 ).x;
int min_y = m_Poly->Vertex( 0 ).y;
int max_y = m_Poly->Vertex( 0 ).y;
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ )
{
if( iterator->x < min_x )
min_x = iterator->x;
if( iterator->x > max_x )
max_x = iterator->x;
if( iterator->y < min_y )
min_y = iterator->y;
if( iterator->y > max_y )
max_y = iterator->y;
}
// Calculate spacing between 2 hatch lines
int spacing;
if( m_hatchStyle == DIAGONAL_EDGE )
spacing = m_hatchPitch;
else
spacing = m_hatchPitch * 2;
// set the "length" of hatch lines (the length on horizontal axis)
int hatch_line_len = m_hatchPitch;
// To have a better look, give a slope depending on the layer
LAYER_NUM layer = GetLayer();
int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1
double slope = 0.707106 * slope_flag; // 45 degrees slope
int max_a, min_a;
if( slope_flag == 1 )
{
max_a = KiROUND( max_y - slope * min_x );
min_a = KiROUND( min_y - slope * max_x );
}
else
{
max_a = KiROUND( max_y - slope * max_x );
min_a = KiROUND( min_y - slope * min_x );
}
min_a = (min_a / spacing) * spacing;
// calculate an offset depending on layer number,
// for a better look of hatches on a multilayer board
int offset = (layer * 7) / 8;
min_a += offset;
// loop through hatch lines
#define MAXPTS 200 // Usually we store only few values per one hatch line
// depending on the complexity of the zone outline
static std::vector<VECTOR2I> pointbuffer;
pointbuffer.clear();
pointbuffer.reserve( MAXPTS + 2 );
for( int a = min_a; a < max_a; a += spacing )
{
// get intersection points for this hatch line
// Note: because we should have an even number of intersections with the
// current hatch line and the zone outline (a closed polygon,
// or a set of closed polygons), if an odd count is found
// we skip this line (should not occur)
pointbuffer.clear();
// Iterate through all vertices
for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ )
{
double x, y, x2, y2;
int ok;
SEG segment = *iterator;
ok = FindLineSegmentIntersection( a, slope,
segment.A.x, segment.A.y,
segment.B.x, segment.B.y,
&x, &y, &x2, &y2 );
if( ok )
{
VECTOR2I point( KiROUND( x ), KiROUND( y ) );
pointbuffer.push_back( point );
}
if( ok == 2 )
{
VECTOR2I point( KiROUND( x2 ), KiROUND( y2 ) );
pointbuffer.push_back( point );
}
if( pointbuffer.size() >= MAXPTS ) // overflow
{
wxASSERT( 0 );
break;
}
}
// ensure we have found an even intersection points count
// because intersections are the ends of segments
// inside the polygon(s) and a segment has 2 ends.
// if not, this is a strange case (a bug ?) so skip this hatch
if( pointbuffer.size() % 2 != 0 )
continue;
// sort points in order of descending x (if more than 2) to
// ensure the starting point and the ending point of the same segment
// are stored one just after the other.
if( pointbuffer.size() > 2 )
sort( pointbuffer.begin(), pointbuffer.end(), sortEndsByDescendingX );
// creates lines or short segments inside the complex polygon
for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 )
{
int dx = pointbuffer[ip + 1].x - pointbuffer[ip].x;
// Push only one line for diagonal hatch,
// or for small lines < twice the line length
// else push 2 small lines
if( m_hatchStyle == DIAGONAL_FULL || std::abs( dx ) < 2 * hatch_line_len )
{
m_HatchLines.push_back( SEG( pointbuffer[ip], pointbuffer[ip + 1] ) );
}
else
{
double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y;
slope = dy / dx;
if( dx > 0 )
dx = hatch_line_len;
else
dx = -hatch_line_len;
int x1 = KiROUND( pointbuffer[ip].x + dx );
int x2 = KiROUND( pointbuffer[ip + 1].x - dx );
int y1 = KiROUND( pointbuffer[ip].y + dx * slope );
int y2 = KiROUND( pointbuffer[ip + 1].y - dx * slope );
m_HatchLines.push_back(SEG(pointbuffer[ip].x, pointbuffer[ip].y, x1, y1));
m_HatchLines.push_back( SEG( pointbuffer[ip+1].x, pointbuffer[ip+1].y, x2, y2 ) );
}
}
}
}
int ZONE_CONTAINER::GetDefaultHatchPitch()
{
return Mils2iu( 20 );
}
BITMAP_DEF ZONE_CONTAINER::GetMenuImage() const
{
return add_zone_xpm;
}
void ZONE_CONTAINER::SwapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_ZONE_AREA_T );
std::swap( *((ZONE_CONTAINER*) this), *((ZONE_CONTAINER*) aImage) );
}
void ZONE_CONTAINER::CacheTriangulation()
{
m_FilledPolysList.CacheTriangulation();
}
bool ZONE_CONTAINER::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly ) const
{
if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ...
return false;
// Make a smoothed polygon out of the user-drawn polygon if required
switch( m_cornerSmoothingType )
{
case ZONE_SETTINGS::SMOOTHING_CHAMFER:
aSmoothedPoly = m_Poly->Chamfer( m_cornerRadius );
break;
case ZONE_SETTINGS::SMOOTHING_FILLET:
// Note: we're now using m_ArcToSegmentsCount only as a hint to determine accuracy
// vs. speed.
if( m_ArcToSegmentsCount > SEGMENT_COUNT_CROSSOVER )
aSmoothedPoly = m_Poly->Fillet( m_cornerRadius, ARC_HIGH_DEF );
else
aSmoothedPoly = m_Poly->Fillet( m_cornerRadius, ARC_LOW_DEF );
break;
default:
// Acute angles between adjacent edges can create issues in calculations,
// in inflate/deflate outlines transforms, especially when the angle is very small.
// We can avoid issues by creating a very small chamfer which remove acute angles,
// or left it without chamfer and use only CPOLYGONS_LIST::InflateOutline to create
// clearance areas
aSmoothedPoly = m_Poly->Chamfer( Millimeter2iu( 0.0 ) );
break;
}
return true;
};
/* Function TransformOutlinesShapeWithClearanceToPolygon
* Convert the zone filled areas polygons to polygons
* inflated (optional) by max( aClearanceValue, the zone clearance)
* and copy them in aCornerBuffer
* param aClearanceValue = the clearance around polygons
* param aAddClearance = true to add a clearance area to the polygon
* false to create the outline polygon.
*/
void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon(
SHAPE_POLY_SET& aCornerBuffer, int aMinClearanceValue, bool aUseNetClearance ) const
{
// Creates the zone outline polygon (with holes if any)
SHAPE_POLY_SET polybuffer;
BuildSmoothedPoly( polybuffer );
// add clearance to outline
int clearance = aMinClearanceValue;
if( aUseNetClearance && IsOnCopperLayer() )
{
clearance = GetClearance();
if( aMinClearanceValue > clearance )
clearance = aMinClearanceValue;
}
// Calculate the polygon with clearance
// holes are linked to the main outline, so only one polygon is created.
if( clearance )
polybuffer.Inflate( clearance, 16 );
polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST );
aCornerBuffer.Append( polybuffer );
}