kicad-source/pcbnew/router/pns_meander_skew_placer.cpp
JamesJCode eb17ebee4e Implement time-domain length tuning
- Adds time and delay units
- Adds time domain tuning parameters entry and storage
- Adds pad-to-die delay property
- Adds time domain parameter interface for length / delay calculations
- Adds unit tracking for numerical constants through LIBEVAL
   - Will need future work to truly propagate through binary expressions
- Adds time domain tuning to meander placers
- Adds time delay display to net inspector panel
- Modifies DRC to handle time domain constraints
2025-04-17 21:46:56 +01:00

246 lines
7.9 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2015 CERN
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "pns_node.h"
#include "pns_itemset.h"
#include "pns_topology.h"
#include "pns_meander_skew_placer.h"
#include "pns_solid.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
namespace PNS {
MEANDER_SKEW_PLACER::MEANDER_SKEW_PLACER ( ROUTER* aRouter ) :
MEANDER_PLACER ( aRouter )
{
// Init temporary variables (do not leave uninitialized members)
m_coupledLength = 0;
m_coupledDelay = 0;
m_padToDieLengthN = 0;
m_padToDieLengthP = 0;
m_padToDieDelayN = 0;
m_padToDieDelayP = 0;
}
MEANDER_SKEW_PLACER::~MEANDER_SKEW_PLACER( )
{
}
bool MEANDER_SKEW_PLACER::Start( const VECTOR2I& aP, ITEM* aStartItem )
{
if( !aStartItem || !aStartItem->OfKind( ITEM::SEGMENT_T | ITEM::ARC_T) )
{
Router()->SetFailureReason( _( "Please select a differential pair track you want to tune." ) );
return false;
}
m_initialSegment = static_cast<LINKED_ITEM*>( aStartItem );
m_currentNode = nullptr;
m_currentStart = getSnappedStartPoint( m_initialSegment, aP );
m_world = Router()->GetWorld( )->Branch();
m_originLine = m_world->AssembleLine( m_initialSegment );
TOPOLOGY topo( m_world );
m_tunedPath = topo.AssembleTrivialPath( m_initialSegment, nullptr, true );
if( !topo.AssembleDiffPair ( m_initialSegment, m_originPair ) )
{
Router()->SetFailureReason( _( "Unable to find complementary differential pair "
"net for skew tuning. Make sure the names of the nets belonging "
"to a differential pair end with either _N/_P or +/-." ) );
return false;
}
if( m_originPair.Gap() < 0 )
m_originPair.SetGap( Router()->Sizes().DiffPairGap() );
if( !m_originPair.PLine().SegmentCount() ||
!m_originPair.NLine().SegmentCount() )
return false;
m_tunedPathP = topo.AssembleTuningPath( Router()->GetInterface(), m_originPair.PLine().GetLink( 0 ), &m_startPad_p,
&m_endPad_p );
m_padToDieLengthP = 0;
m_padToDieDelayP = 0;
if( m_startPad_p )
{
m_padToDieLengthP += m_startPad_p->GetPadToDie();
m_padToDieDelayP += m_startPad_p->GetPadToDieDelay();
}
if( m_endPad_p )
{
m_padToDieLengthP += m_endPad_p->GetPadToDie();
m_padToDieDelayP += m_endPad_p->GetPadToDieDelay();
}
m_tunedPathN = topo.AssembleTuningPath( Router()->GetInterface(), m_originPair.NLine().GetLink( 0 ), &m_startPad_n,
&m_endPad_n );
m_padToDieLengthN = 0;
m_padToDieDelayN = 0;
if( m_startPad_n )
{
m_padToDieLengthN += m_startPad_n->GetPadToDie();
m_padToDieDelayN += m_startPad_n->GetPadToDieDelay();
}
if( m_endPad_n )
{
m_padToDieLengthN += m_endPad_n->GetPadToDie();
m_padToDieDelayN += m_endPad_n->GetPadToDieDelay();
}
m_world->Remove( m_originLine );
m_currentWidth = m_originLine.Width();
m_currentEnd = VECTOR2I( 0, 0 );
const BOARD_CONNECTED_ITEM* conItem = static_cast<BOARD_CONNECTED_ITEM*>( aStartItem->GetSourceItem() );
m_netClass = conItem->GetEffectiveNetClass();
m_settings.m_netClass = m_netClass;
if ( m_originPair.NetP() == m_originLine.Net() )
{
m_coupledLength = m_padToDieLengthN + lineLength( m_tunedPathN, m_startPad_n, m_endPad_n );
m_lastLength = m_padToDieLengthP + lineLength( m_tunedPathP, m_startPad_p, m_endPad_p );
m_coupledDelay = m_padToDieDelayN + lineDelay( m_tunedPathN, m_startPad_p, m_endPad_p );
m_lastDelay = m_padToDieDelayP + lineDelay( m_tunedPathP, m_startPad_p, m_endPad_p );
m_tunedPath = m_tunedPathP;
}
else
{
m_coupledLength = m_padToDieLengthP + lineLength( m_tunedPathP, m_startPad_p, m_endPad_p );
m_lastLength = m_padToDieLengthN + lineLength( m_tunedPathN, m_startPad_n, m_endPad_n );
m_coupledDelay = m_padToDieDelayP + lineDelay( m_tunedPathP, m_startPad_p, m_endPad_p );
m_lastDelay = m_padToDieDelayN + lineDelay( m_tunedPathN, m_startPad_p, m_endPad_p );
m_tunedPath = m_tunedPathN;
}
calculateTimeDomainTargets();
return true;
}
long long int MEANDER_SKEW_PLACER::origPathLength() const
{
if ( m_originPair.NetP() == m_originLine.Net() )
return m_padToDieLengthP + lineLength( m_tunedPath, m_startPad_p, m_endPad_p );
return m_padToDieLengthN + lineLength( m_tunedPath, m_startPad_n, m_endPad_n );
}
int64_t MEANDER_SKEW_PLACER::origPathDelay() const
{
if( m_originPair.NetP() == m_originLine.Net() )
return m_padToDieDelayP + lineDelay( m_tunedPath, m_startPad_p, m_endPad_p );
return m_padToDieDelayN + lineDelay( m_tunedPath, m_startPad_n, m_endPad_n );
}
long long int MEANDER_SKEW_PLACER::CurrentSkew() const
{
return m_lastLength - m_coupledLength;
}
bool MEANDER_SKEW_PLACER::Move( const VECTOR2I& aP, ITEM* aEndItem )
{
calculateTimeDomainTargets();
bool isPositive = m_originPair.NetP() == m_originLine.Net();
for( const ITEM* item : m_tunedPathP.CItems() )
{
if( const LINE* l = dyn_cast<const LINE*>( item ) )
{
PNS_DBG( Dbg(), AddItem, l, BLUE, 10000, wxT( "tuned-path-skew-p" ) );
m_router->GetInterface()->DisplayPathLine( l->CLine(), isPositive ? 1 : 0 );
}
}
for( const ITEM* item : m_tunedPathN.CItems() )
{
if( const LINE* l = dyn_cast<const LINE*>( item ) )
{
PNS_DBG( Dbg(), AddItem, l, YELLOW, 10000, wxT( "tuned-path-skew-n" ) );
m_router->GetInterface()->DisplayPathLine( l->CLine(), isPositive ? 0 : 1 );
}
}
return doMove( aP, aEndItem, m_coupledLength + m_settings.m_targetSkew.Opt(),
m_coupledLength + m_settings.m_targetSkew.Min(),
m_coupledLength + m_settings.m_targetSkew.Max() );
}
long long int MEANDER_SKEW_PLACER::TuningLengthResult() const
{
return m_lastLength - m_coupledLength;
}
int64_t MEANDER_SKEW_PLACER::TuningDelayResult() const
{
return m_lastDelay - m_coupledDelay;
}
void MEANDER_SKEW_PLACER::calculateTimeDomainTargets()
{
if( m_settings.m_isTimeDomain )
{
const int64_t minSkew = m_router->GetInterface()->CalculateLengthForDelay(
m_settings.m_targetSkewDelay.Min(), m_originPair.Width(), true, m_originPair.Gap(),
m_router->GetCurrentLayer(), m_netClass );
const int64_t optSkew = m_router->GetInterface()->CalculateLengthForDelay(
m_settings.m_targetSkewDelay.Opt(), m_originPair.Width(), true, m_originPair.Gap(),
m_router->GetCurrentLayer(), m_netClass );
const int64_t maxSkew = m_router->GetInterface()->CalculateLengthForDelay(
m_settings.m_targetSkewDelay.Max(), m_originPair.Width(), true, m_originPair.Gap(),
m_router->GetCurrentLayer(), m_netClass );
m_settings.m_targetSkew.SetMin( static_cast<int>( minSkew ) );
m_settings.m_targetSkew.SetOpt( static_cast<int>( optSkew ) );
m_settings.m_targetSkew.SetMax( static_cast<int>( maxSkew ) );
}
}
}