kicad-source/pcbnew/tracks_cleaner.cpp
2025-09-10 13:02:24 -07:00

807 lines
27 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2004-2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <atomic>
#include <bit>
#include <reporter.h>
#include <board_commit.h>
#include <cleanup_item.h>
#include <connectivity/connectivity_algo.h>
#include <connectivity/connectivity_data.h>
#include <thread_pool.h>
#include <lset.h>
#include <tool/tool_manager.h>
#include <tools/pcb_actions.h>
#include <tools/global_edit_tool.h>
#include <drc/drc_rtree.h>
#include <tracks_cleaner.h>
TRACKS_CLEANER::TRACKS_CLEANER( BOARD* aPcb, BOARD_COMMIT& aCommit ) :
m_brd( aPcb ),
m_commit( aCommit ),
m_dryRun( true ),
m_itemsList( nullptr ),
m_reporter( nullptr ),
m_filter( nullptr )
{
}
/* Main cleaning function.
* Delete
* - Redundant points on tracks (merge aligned segments)
* - vias on pad
* - null length segments
*/
void TRACKS_CLEANER::CleanupBoard( bool aDryRun,
std::vector<std::shared_ptr<CLEANUP_ITEM> >* aItemsList,
bool aRemoveMisConnected, bool aCleanVias, bool aMergeSegments,
bool aDeleteUnconnected, bool aDeleteTracksinPad,
bool aDeleteDanglingVias, REPORTER* aReporter )
{
m_reporter = aReporter;
bool has_deleted = false;
m_dryRun = aDryRun;
m_itemsList = aItemsList;
if( m_reporter )
{
if( aDryRun )
m_reporter->Report( _( "Checking null tracks and vias..." ) );
else
m_reporter->Report( _( "Removing null tracks and vias..." ) );
wxSafeYield(); // Timeslice to update UI
}
bool removeNullSegments = aMergeSegments || aRemoveMisConnected;
cleanup( aCleanVias, removeNullSegments, aMergeSegments /* dup segments*/, aMergeSegments );
if( m_reporter )
{
if( aDryRun )
m_reporter->Report( _( "Checking redundant tracks..." ) );
else
m_reporter->Report( _( "Removing redundant tracks..." ) );
wxSafeYield(); // Timeslice to update UI
}
// If we didn't remove duplicates above, do it now
if( !aMergeSegments )
cleanup( false, false, true, false );
if( aRemoveMisConnected )
{
if( m_reporter )
{
if( aDryRun )
m_reporter->Report( _( "Checking shorting tracks..." ) );
else
m_reporter->Report( _( "Removing shorting tracks..." ) );
wxSafeYield(); // Timeslice to update UI
}
removeShortingTrackSegments();
}
if( aDeleteTracksinPad )
{
if( m_reporter )
{
if( aDryRun )
m_reporter->Report( _( "Checking tracks in pads..." ) );
else
m_reporter->Report( _( "Removing tracks in pads..." ) );
wxSafeYield(); // Timeslice to update UI
}
deleteTracksInPads();
}
if( aDeleteUnconnected || aDeleteDanglingVias )
{
if( m_reporter )
{
if( aDryRun )
{
m_reporter->Report( _( "Checking dangling tracks and vias..." ) );
}
else
{
if( aDeleteUnconnected )
m_reporter->Report( _( "Removing dangling tracks..." ) );
if( aDeleteDanglingVias )
m_reporter->Report( _( "Removing dangling vias..." ) );
}
wxSafeYield(); // Timeslice to update UI
}
has_deleted = deleteDanglingTracks( aDeleteUnconnected, aDeleteDanglingVias );
}
if( has_deleted && aMergeSegments )
{
if( m_reporter )
{
if( aDryRun )
m_reporter->Report( _( "Checking collinear tracks..." ) );
else
m_reporter->Report( _( "Merging collinear tracks..." ) );
wxSafeYield(); // Timeslice to update UI
}
cleanup( false, false, false, true );
}
}
bool TRACKS_CLEANER::filterItem( BOARD_CONNECTED_ITEM* aItem )
{
if( !m_filter )
return false;
return (m_filter)( aItem );
}
void TRACKS_CLEANER::removeShortingTrackSegments()
{
std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_brd->GetConnectivity();
std::set<BOARD_ITEM *> toRemove;
for( PCB_TRACK* segment : m_brd->Tracks() )
{
if( segment->IsLocked() || filterItem( segment ) )
continue;
for( PAD* testedPad : connectivity->GetConnectedPads( segment ) )
{
if( segment->GetNetCode() != testedPad->GetNetCode() )
{
std::shared_ptr<CLEANUP_ITEM> item;
if( segment->Type() == PCB_VIA_T )
item = std::make_shared<CLEANUP_ITEM>( CLEANUP_SHORTING_VIA );
else
item = std::make_shared<CLEANUP_ITEM>( CLEANUP_SHORTING_TRACK );
item->SetItems( segment );
m_itemsList->push_back( std::move( item ) );
toRemove.insert( segment );
}
}
for( PCB_TRACK* testedTrack : connectivity->GetConnectedTracks( segment ) )
{
if( segment->GetNetCode() != testedTrack->GetNetCode() )
{
std::shared_ptr<CLEANUP_ITEM> item;
if( segment->Type() == PCB_VIA_T )
item = std::make_shared<CLEANUP_ITEM>( CLEANUP_SHORTING_VIA );
else
item = std::make_shared<CLEANUP_ITEM>( CLEANUP_SHORTING_TRACK );
item->SetItems( segment );
m_itemsList->push_back( std::move( item ) );
toRemove.insert( segment );
}
}
}
if( !m_dryRun )
removeItems( toRemove );
}
bool TRACKS_CLEANER::testTrackEndpointIsNode( PCB_TRACK* aTrack, bool aTstStart, bool aTstEnd )
{
if( !( aTstStart && aTstEnd ) )
return false;
// A node is a point where more than 2 items are connected. However, we elide tracks that are
// collinear with the track being tested.
const std::list<CN_ITEM*>& items =
m_brd->GetConnectivity()->GetConnectivityAlgo()->ItemEntry( aTrack ).GetItems();
if( items.empty() )
return false;
int itemcount = 0;
for( CN_ITEM* item : items )
{
if( !item->Valid() || item->Parent() == aTrack || item->Parent()->HasFlag( IS_DELETED ) )
continue;
if( item->Parent()->Type() == PCB_TRACE_T &&
static_cast<PCB_TRACK*>( item->Parent() )->ApproxCollinear( aTrack ) )
{
continue;
}
for( const std::shared_ptr<CN_ANCHOR>& anchor : item->Anchors() )
{
if( ( aTstStart && anchor->Pos() == aTrack->GetStart() )
&& ( aTstEnd && anchor->Pos() == aTrack->GetEnd() ) )
{
itemcount++;
break;
}
}
}
return itemcount > 1;
}
bool TRACKS_CLEANER::deleteDanglingTracks( bool aTrack, bool aVia )
{
bool item_erased = false;
bool modified = false;
if( !aTrack && !aVia )
return false;
do // Iterate when at least one track is deleted
{
item_erased = false;
// Ensure the connectivity is up to date, especially after removing a dangling segment
m_brd->BuildConnectivity();
// Keep a duplicate deque to all deleting in the primary
std::deque<PCB_TRACK*> temp_tracks( m_brd->Tracks() );
for( PCB_TRACK* track : temp_tracks )
{
if( track->HasFlag( IS_DELETED ) || track->IsLocked() || filterItem( track ) )
continue;
if( !aVia && track->Type() == PCB_VIA_T )
continue;
if( !aTrack && ( track->Type() == PCB_TRACE_T || track->Type() == PCB_ARC_T ) )
continue;
// Test if a track (or a via) endpoint is not connected to another track or zone.
if( m_brd->GetConnectivity()->TestTrackEndpointDangling( track, false ) )
{
std::shared_ptr<CLEANUP_ITEM> item;
if( track->Type() == PCB_VIA_T )
item = std::make_shared<CLEANUP_ITEM>( CLEANUP_DANGLING_VIA );
else
item = std::make_shared<CLEANUP_ITEM>( CLEANUP_DANGLING_TRACK );
item->SetItems( track );
m_itemsList->push_back( std::move( item ) );
track->SetFlags( IS_DELETED );
// keep iterating, because a track connected to the deleted track
// now perhaps is not connected and should be deleted
item_erased = true;
if( !m_dryRun )
{
m_brd->Remove( track );
m_commit.Removed( track );
modified = true;
}
}
}
} while( item_erased ); // A segment was erased: test for some new dangling segments
return modified;
}
void TRACKS_CLEANER::deleteTracksInPads()
{
std::set<BOARD_ITEM*> toRemove;
// Delete tracks that start and end on the same pad
std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_brd->GetConnectivity();
for( PCB_TRACK* track : m_brd->Tracks() )
{
if( track->IsLocked() || filterItem( track ) )
continue;
if( track->Type() == PCB_VIA_T )
continue;
// Mark track if connected to pads
for( PAD* pad : connectivity->GetConnectedPads( track ) )
{
if( pad->HitTest( track->GetStart() ) && pad->HitTest( track->GetEnd() ) )
{
SHAPE_POLY_SET poly;
track->TransformShapeToPolygon( poly, track->GetLayer(), 0, track->GetMaxError(),
ERROR_INSIDE );
poly.BooleanSubtract( *pad->GetEffectivePolygon( track->GetLayer(), ERROR_INSIDE ) );
if( poly.IsEmpty() )
{
auto item = std::make_shared<CLEANUP_ITEM>( CLEANUP_TRACK_IN_PAD );
item->SetItems( track );
m_itemsList->push_back( std::move( item ) );
toRemove.insert( track );
track->SetFlags( IS_DELETED );
}
}
}
}
if( !m_dryRun )
removeItems( toRemove );
}
/**
* Geometry-based cleanup: duplicate items, null items, colinear items.
*/
void TRACKS_CLEANER::cleanup( bool aDeleteDuplicateVias, bool aDeleteNullSegments,
bool aDeleteDuplicateSegments, bool aMergeSegments )
{
DRC_RTREE rtree;
for( PCB_TRACK* track : m_brd->Tracks() )
{
track->ClearFlags( IS_DELETED | SKIP_STRUCT );
rtree.Insert( track, track->GetLayer() );
}
std::set<BOARD_ITEM*> toRemove;
for( PCB_TRACK* track : m_brd->Tracks() )
{
if( track->HasFlag( IS_DELETED ) || track->IsLocked() || filterItem( track ) )
continue;
if( aDeleteDuplicateVias && track->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( track );
if( via->GetStart() != via->GetEnd() )
via->SetEnd( via->GetStart() );
rtree.QueryColliding( via, via->GetLayer(), via->GetLayer(),
// Filter:
[&]( BOARD_ITEM* aItem ) -> bool
{
return aItem->Type() == PCB_VIA_T
&& !aItem->HasFlag( SKIP_STRUCT )
&& !aItem->HasFlag( IS_DELETED );
},
// Visitor:
[&]( BOARD_ITEM* aItem ) -> bool
{
PCB_VIA* other = static_cast<PCB_VIA*>( aItem );
if( via->GetPosition() == other->GetPosition()
&& via->GetViaType() == other->GetViaType()
&& via->GetLayerSet() == other->GetLayerSet() )
{
auto item = std::make_shared<CLEANUP_ITEM>( CLEANUP_REDUNDANT_VIA );
item->SetItems( via );
m_itemsList->push_back( std::move( item ) );
via->SetFlags( IS_DELETED );
toRemove.insert( via );
}
return true;
} );
// To delete through Via on THT pads at same location
// Examine the list of connected pads: if a through pad is found, the via is redundant
for( PAD* pad : m_brd->GetConnectivity()->GetConnectedPads( via ) )
{
const LSET all_cu = LSET::AllCuMask( m_brd->GetCopperLayerCount() );
if( ( pad->GetLayerSet() & all_cu ) == all_cu )
{
auto item = std::make_shared<CLEANUP_ITEM>( CLEANUP_REDUNDANT_VIA );
item->SetItems( via, pad );
m_itemsList->push_back( std::move( item ) );
via->SetFlags( IS_DELETED );
toRemove.insert( via );
break;
}
}
via->SetFlags( SKIP_STRUCT );
}
if( aDeleteNullSegments && track->Type() != PCB_VIA_T )
{
if( track->IsNull() )
{
auto item = std::make_shared<CLEANUP_ITEM>( CLEANUP_ZERO_LENGTH_TRACK );
item->SetItems( track );
m_itemsList->push_back( std::move( item ) );
track->SetFlags( IS_DELETED );
toRemove.insert( track );
}
}
if( aDeleteDuplicateSegments && track->Type() == PCB_TRACE_T && !track->IsNull() )
{
rtree.QueryColliding( track, track->GetLayer(), track->GetLayer(),
// Filter:
[&]( BOARD_ITEM* aItem ) -> bool
{
return aItem->Type() == PCB_TRACE_T
&& !aItem->HasFlag( SKIP_STRUCT )
&& !aItem->HasFlag( IS_DELETED )
&& !static_cast<PCB_TRACK*>( aItem )->IsNull();
},
// Visitor:
[&]( BOARD_ITEM* aItem ) -> bool
{
PCB_TRACK* other = static_cast<PCB_TRACK*>( aItem );
if( track->IsPointOnEnds( other->GetStart() )
&& track->IsPointOnEnds( other->GetEnd() )
&& track->GetWidth() == other->GetWidth()
&& track->GetLayer() == other->GetLayer() )
{
auto item = std::make_shared<CLEANUP_ITEM>( CLEANUP_DUPLICATE_TRACK );
item->SetItems( track );
m_itemsList->push_back( std::move( item ) );
track->SetFlags( IS_DELETED );
toRemove.insert( track );
}
return true;
} );
track->SetFlags( SKIP_STRUCT );
}
}
if( !m_dryRun )
removeItems( toRemove );
auto mergeSegments = [&]( std::shared_ptr<CN_CONNECTIVITY_ALGO> connectivity ) -> bool
{
auto track_loop = [&]( int aStart, int aEnd ) -> std::vector<std::pair<PCB_TRACK*, PCB_TRACK*>>
{
std::vector<std::pair<PCB_TRACK*, PCB_TRACK*>> tracks;
for( int ii = aStart; ii < aEnd; ++ii )
{
PCB_TRACK* segment = m_brd->Tracks()[ii];
// one can merge only collinear segments, not vias or arcs.
if( segment->Type() != PCB_TRACE_T )
continue;
if( segment->HasFlag( IS_DELETED ) ) // already taken into account
continue;
if( filterItem( segment ) )
continue;
// for each end of the segment:
for( CN_ITEM* citem : connectivity->ItemEntry( segment ).GetItems() )
{
// Do not merge an end which has different width tracks attached -- it's a
// common use-case for necking-down a track between pads.
std::vector<PCB_TRACK*> sameWidthCandidates;
std::vector<PCB_TRACK*> differentWidthCandidates;
for( CN_ITEM* connected : citem->ConnectedItems() )
{
if( !connected->Valid() )
continue;
BOARD_CONNECTED_ITEM* candidate = connected->Parent();
if( candidate->Type() == PCB_TRACE_T && !candidate->HasFlag( IS_DELETED )
&& !filterItem( candidate ) )
{
PCB_TRACK* candidateSegment = static_cast<PCB_TRACK*>( candidate );
if( candidateSegment->GetWidth() == segment->GetWidth() )
{
sameWidthCandidates.push_back( candidateSegment );
}
else
{
differentWidthCandidates.push_back( candidateSegment );
break;
}
}
}
if( !differentWidthCandidates.empty() )
continue;
for( PCB_TRACK* candidate : sameWidthCandidates )
{
if( candidate < segment ) // avoid duplicate merges
continue;
if( segment->ApproxCollinear( *candidate )
&& testMergeCollinearSegments( segment, candidate ) )
{
tracks.emplace_back( segment, candidate );
break;
}
}
}
}
return tracks;
};
// The idea here is to parallelize the loop that does not modify the connectivity
// and extract all of the pairs of segments that might be merged. Then, perform
// the actual merge in the main loop.
thread_pool& tp = GetKiCadThreadPool();
auto merge_returns = tp.submit_blocks( 0, m_brd->Tracks().size(), track_loop );
bool retval = false;
for( size_t ii = 0; ii < merge_returns.size(); ++ii )
{
std::future<std::vector<std::pair<PCB_TRACK*, PCB_TRACK*>>>& ret = merge_returns[ii];
if( ret.valid() )
{
for( auto& [seg1, seg2] : ret.get() )
{
retval = true;
if( seg1->HasFlag( IS_DELETED ) || seg2->HasFlag( IS_DELETED ) )
continue;
mergeCollinearSegments( seg1, seg2 );
}
}
}
return retval;
};
if( aMergeSegments )
{
do
{
while( !m_brd->BuildConnectivity() )
wxSafeYield();
std::lock_guard lock( m_mutex );
m_connectedItemsCache.clear();
} while( mergeSegments( m_brd->GetConnectivity()->GetConnectivityAlgo() ) );
}
for( PCB_TRACK* track : m_brd->Tracks() )
track->ClearFlags( IS_DELETED | SKIP_STRUCT );
}
const std::vector<BOARD_CONNECTED_ITEM*>& TRACKS_CLEANER::getConnectedItems( PCB_TRACK* aTrack )
{
const std::shared_ptr<CONNECTIVITY_DATA>& connectivity = m_brd->GetConnectivity();
std::lock_guard lock( m_mutex );
if( !m_connectedItemsCache.contains( aTrack ) )
m_connectedItemsCache[aTrack] = connectivity->GetConnectedItems( aTrack );
return m_connectedItemsCache.at( aTrack );
}
bool TRACKS_CLEANER::testMergeCollinearSegments( PCB_TRACK* aSeg1, PCB_TRACK* aSeg2, PCB_TRACK* aDummySeg )
{
if( aSeg1->IsLocked() || aSeg2->IsLocked() )
return false;
// Collect the unique points where the two tracks are connected to other items
const unsigned p1s = 1 << 0;
const unsigned p1e = 1 << 1;
const unsigned p2s = 1 << 2;
const unsigned p2e = 1 << 3;
std::vector<VECTOR2I> pts = { aSeg1->GetStart(), aSeg1->GetEnd(), aSeg2->GetStart(), aSeg2->GetEnd() };
std::atomic<unsigned> flags = 0;
auto collectPtsSeg1 =
[&]( BOARD_CONNECTED_ITEM* citem )
{
if( std::popcount( flags.load() ) > 2 )
return;
if( citem->Type() == PCB_TRACE_T || citem->Type() == PCB_ARC_T
|| citem->Type() == PCB_VIA_T )
{
PCB_TRACK* track = static_cast<PCB_TRACK*>( citem );
if( track->IsPointOnEnds( aSeg1->GetStart() ) )
flags |= p1s;
if( track->IsPointOnEnds( aSeg1->GetEnd() ) )
flags |= p1e;
}
else
{
if( !( flags & p1s ) && citem->HitTest( aSeg1->GetStart(), ( aSeg1->GetWidth() + 1 ) / 2 ) )
flags |= p1s;
if( !( flags & p1e ) && citem->HitTest( aSeg1->GetEnd(), ( aSeg1->GetWidth() + 1 ) / 2 ) )
flags |= p1e;
}
};
auto collectPtsSeg2 =
[&]( BOARD_CONNECTED_ITEM* citem )
{
if( std::popcount( flags.load() ) > 2 )
return;
if( citem->Type() == PCB_TRACE_T || citem->Type() == PCB_ARC_T
|| citem->Type() == PCB_VIA_T )
{
PCB_TRACK* track = static_cast<PCB_TRACK*>( citem );
if( track->IsPointOnEnds( aSeg2->GetStart() ) )
flags |= p2s;
if( track->IsPointOnEnds( aSeg2->GetEnd() ) )
flags |= p2e;
}
else
{
if( !( flags & p2s ) && citem->HitTest( aSeg2->GetStart(), ( aSeg2->GetWidth() + 1 ) / 2 ) )
flags |= p2s;
if( !( flags & p2e ) && citem->HitTest( aSeg2->GetEnd(), ( aSeg2->GetWidth() + 1 ) / 2 ) )
flags |= p2e;
}
};
for( BOARD_CONNECTED_ITEM* item : getConnectedItems( aSeg1 ) )
{
if( item->HasFlag( IS_DELETED ) )
continue;
if( item != aSeg1 && item != aSeg2 )
collectPtsSeg1( item );
}
for( BOARD_CONNECTED_ITEM* item : getConnectedItems( aSeg2 ) )
{
if( item->HasFlag( IS_DELETED ) )
continue;
if( item != aSeg1 && item != aSeg2 )
collectPtsSeg2( item );
}
// This means there is a node in the center
if( std::popcount( flags.load() ) > 2 )
return false;
// Verify the removed point after merging is not a node.
// If it is a node (i.e. if more than one other item is connected, the segments cannot be merged
PCB_TRACK dummy_seg( *aSeg1 );
if( !aDummySeg )
aDummySeg = &dummy_seg;
// Calculate the new ends of the segment to merge, and store them to dummy_seg:
int min_x = std::min( aSeg1->GetStart().x,
std::min( aSeg1->GetEnd().x, std::min( aSeg2->GetStart().x, aSeg2->GetEnd().x ) ) );
int min_y = std::min( aSeg1->GetStart().y,
std::min( aSeg1->GetEnd().y, std::min( aSeg2->GetStart().y, aSeg2->GetEnd().y ) ) );
int max_x = std::max( aSeg1->GetStart().x,
std::max( aSeg1->GetEnd().x, std::max( aSeg2->GetStart().x, aSeg2->GetEnd().x ) ) );
int max_y = std::max( aSeg1->GetStart().y,
std::max( aSeg1->GetEnd().y, std::max( aSeg2->GetStart().y, aSeg2->GetEnd().y ) ) );
if( ( aSeg1->GetStart().x > aSeg1->GetEnd().x )
== ( aSeg1->GetStart().y > aSeg1->GetEnd().y ) )
{
aDummySeg->SetStart( VECTOR2I( min_x, min_y ) );
aDummySeg->SetEnd( VECTOR2I( max_x, max_y ) );
}
else
{
aDummySeg->SetStart( VECTOR2I( min_x, max_y ) );
aDummySeg->SetEnd( VECTOR2I( max_x, min_y ) );
}
// The new ends of the segment must be connected to all of the same points as the original
// segments. If not, the segments cannot be merged.
for( unsigned i = 0; i < 4; ++i )
{
if( ( flags & ( 1 << i ) ) && !aDummySeg->IsPointOnEnds( pts[i] ) )
return false;
}
// Now find the removed end(s) and stop merging if it is a node:
return !testTrackEndpointIsNode( aSeg1, aDummySeg->IsPointOnEnds( aSeg1->GetStart() ),
aDummySeg->IsPointOnEnds( aSeg1->GetEnd() ) );
}
bool TRACKS_CLEANER::mergeCollinearSegments( PCB_TRACK* aSeg1, PCB_TRACK* aSeg2 )
{
PCB_TRACK dummy_seg( *aSeg1 );
if( !testMergeCollinearSegments( aSeg1, aSeg2, &dummy_seg ) )
return false;
std::shared_ptr<CLEANUP_ITEM> item = std::make_shared<CLEANUP_ITEM>( CLEANUP_MERGE_TRACKS );
item->SetItems( aSeg1, aSeg2 );
m_itemsList->push_back( std::move( item ) );
aSeg2->SetFlags( IS_DELETED );
if( !m_dryRun )
{
m_commit.Modify( aSeg1 );
*aSeg1 = dummy_seg;
m_brd->GetConnectivity()->Update( aSeg1 );
// Merge successful, seg2 has to go away
m_brd->Remove( aSeg2 );
m_commit.Removed( aSeg2 );
}
return true;
}
void TRACKS_CLEANER::removeItems( std::set<BOARD_ITEM*>& aItems )
{
for( BOARD_ITEM* item : aItems )
{
m_brd->Remove( item );
m_commit.Removed( item );
}
}