mirror of
https://gitlab.com/kicad/code/kicad.git
synced 2025-09-14 18:23:15 +02:00
This is the first step to allowing non-segments in the line chain. External routines cannot be allowed to change the line chain without going through the internal routines. To accomplish this, we remove the Vertex() and Point() access routines and only leave the const versions. Transformations are given for both points as well as the chain itself.
1041 lines
31 KiB
C++
1041 lines
31 KiB
C++
/**
|
|
* @file DXF_plotter.cpp
|
|
* @brief Kicad: specialized plotter for DXF files format
|
|
*/
|
|
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2017 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
|
|
#include <fctsys.h>
|
|
#include <gr_basic.h>
|
|
#include <trigo.h>
|
|
#include <eda_base_frame.h>
|
|
#include <base_struct.h>
|
|
#include <plotter.h>
|
|
#include <macros.h>
|
|
#include <kicad_string.h>
|
|
#include <convert_basic_shapes_to_polygon.h>
|
|
|
|
/**
|
|
* Oblique angle for DXF native text
|
|
* (I don't remember if 15 degrees is the ISO value... it looks nice anyway)
|
|
*/
|
|
static const double DXF_OBLIQUE_ANGLE = 15;
|
|
|
|
/* The layer/colors palette. The acad/DXF palette is divided in 3 zones:
|
|
|
|
- The primary colors (1 - 9)
|
|
- An HSV zone (10-250, 5 values x 2 saturations x 10 hues
|
|
- Greys (251 - 255)
|
|
|
|
There is *no* black... the white does it on paper, usually, and
|
|
anyway it depends on the plotter configuration, since DXF colors
|
|
are meant to be logical only (they represent *both* line color and
|
|
width); later version with plot styles only complicate the matter!
|
|
|
|
As usual, brown and magenta/purple are difficult to place since
|
|
they are actually variations of other colors.
|
|
*/
|
|
static const struct
|
|
{
|
|
const char *name;
|
|
int color;
|
|
} dxf_layer[NBCOLORS] =
|
|
{
|
|
{ "BLACK", 7 }, // In DXF, color 7 is *both* white and black!
|
|
{ "GRAY1", 251 },
|
|
{ "GRAY2", 8 },
|
|
{ "GRAY3", 9 },
|
|
{ "WHITE", 7 },
|
|
{ "LYELLOW", 51 },
|
|
{ "BLUE1", 178 },
|
|
{ "GREEN1", 98 },
|
|
{ "CYAN1", 138 },
|
|
{ "RED1", 18 },
|
|
{ "MAGENTA1", 228 },
|
|
{ "BROWN1", 58 },
|
|
{ "BLUE2", 5 },
|
|
{ "GREEN2", 3 },
|
|
{ "CYAN2", 4 },
|
|
{ "RED2", 1 },
|
|
{ "MAGENTA2", 6 },
|
|
{ "BROWN2", 54 },
|
|
{ "BLUE3", 171 },
|
|
{ "GREEN3", 91 },
|
|
{ "CYAN3", 131 },
|
|
{ "RED3", 11 },
|
|
{ "MAGENTA3", 221 },
|
|
{ "YELLOW3", 2 },
|
|
{ "BLUE4", 5 },
|
|
{ "GREEN4", 3 },
|
|
{ "CYAN4", 4 },
|
|
{ "RED4", 1 },
|
|
{ "MAGENTA4", 6 },
|
|
{ "YELLOW4", 2 }
|
|
};
|
|
|
|
|
|
static const char* getDXFLineType( PlotDashType aType )
|
|
{
|
|
switch( aType )
|
|
{
|
|
case PLOTDASHTYPE_SOLID: return "CONTINUOUS";
|
|
case PLOTDASHTYPE_DASH: return "DASHED";
|
|
case PLOTDASHTYPE_DOT: return "DOTTED";
|
|
case PLOTDASHTYPE_DASHDOT: return "DASHDOT";
|
|
}
|
|
|
|
wxFAIL_MSG( "Unhandled PlotDashType" );
|
|
return "CONTINUOUS";
|
|
}
|
|
|
|
|
|
// A helper function to create a color name acceptable in DXF files
|
|
// DXF files do not use a RGB definition
|
|
static wxString getDXFColorName( COLOR4D aColor )
|
|
{
|
|
EDA_COLOR_T color = ColorFindNearest( int( aColor.r*255 ),
|
|
int( aColor.g*255 ),
|
|
int( aColor.b*255 ) );
|
|
wxString cname( dxf_layer[color].name );
|
|
return cname;
|
|
}
|
|
|
|
|
|
void DXF_PLOTTER::SetUnits( DXF_UNITS aUnit )
|
|
{
|
|
m_plotUnits = aUnit;
|
|
|
|
switch( aUnit )
|
|
{
|
|
case DXF_UNIT_MILLIMETERS:
|
|
m_unitScalingFactor = 0.00254;
|
|
m_measurementDirective = 1;
|
|
break;
|
|
|
|
case DXF_UNIT_INCHES:
|
|
default:
|
|
m_unitScalingFactor = 0.0001;
|
|
m_measurementDirective = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Set the scale/position for the DXF plot
|
|
* The DXF engine doesn't support line widths and mirroring. The output
|
|
* coordinate system is in the first quadrant (in mm)
|
|
*/
|
|
void DXF_PLOTTER::SetViewport( const wxPoint& aOffset, double aIusPerDecimil,
|
|
double aScale, bool aMirror )
|
|
{
|
|
plotOffset = aOffset;
|
|
plotScale = aScale;
|
|
|
|
/* DXF paper is 'virtual' so there is no need of a paper size.
|
|
Also this way we can handle the aux origin which can be useful
|
|
(for example when aligning to a mechanical drawing) */
|
|
paperSize.x = 0;
|
|
paperSize.y = 0;
|
|
|
|
/* Like paper size DXF units are abstract too. Anyway there is a
|
|
* system variable (MEASUREMENT) which will be set to 0 to indicate
|
|
* english units */
|
|
m_IUsPerDecimil = aIusPerDecimil;
|
|
iuPerDeviceUnit = 1.0 / aIusPerDecimil; // Gives a DXF in decimils
|
|
iuPerDeviceUnit *= GetUnitScaling(); // Get the scaling factor for the current units
|
|
|
|
SetDefaultLineWidth( 0 ); // No line width on DXF
|
|
m_plotMirror = false; // No mirroring on DXF
|
|
m_currentColor = COLOR4D::BLACK;
|
|
}
|
|
|
|
/**
|
|
* Opens the DXF plot with a skeleton header
|
|
*/
|
|
bool DXF_PLOTTER::StartPlot()
|
|
{
|
|
wxASSERT( outputFile );
|
|
|
|
// DXF HEADER - Boilerplate
|
|
// Defines the minimum for drawing i.e. the angle system and the
|
|
// 4 linetypes (CONTINUOUS, DOTDASH, DASHED and DOTTED)
|
|
fprintf( outputFile,
|
|
" 0\n"
|
|
"SECTION\n"
|
|
" 2\n"
|
|
"HEADER\n"
|
|
" 9\n"
|
|
"$ANGBASE\n"
|
|
" 50\n"
|
|
"0.0\n"
|
|
" 9\n"
|
|
"$ANGDIR\n"
|
|
" 70\n"
|
|
"1\n"
|
|
" 9\n"
|
|
"$MEASUREMENT\n"
|
|
" 70\n"
|
|
"%u\n"
|
|
" 0\n"
|
|
"ENDSEC\n"
|
|
" 0\n"
|
|
"SECTION\n"
|
|
" 2\n"
|
|
"TABLES\n"
|
|
" 0\n"
|
|
"TABLE\n"
|
|
" 2\n"
|
|
"LTYPE\n"
|
|
" 70\n"
|
|
"4\n"
|
|
" 0\n"
|
|
"LTYPE\n"
|
|
" 5\n"
|
|
"40F\n"
|
|
" 2\n"
|
|
"CONTINUOUS\n"
|
|
" 70\n"
|
|
"0\n"
|
|
" 3\n"
|
|
"Solid line\n"
|
|
" 72\n"
|
|
"65\n"
|
|
" 73\n"
|
|
"0\n"
|
|
" 40\n"
|
|
"0.0\n"
|
|
" 0\n"
|
|
"LTYPE\n"
|
|
" 5\n"
|
|
"410\n"
|
|
" 2\n"
|
|
"DASHDOT\n"
|
|
" 70\n"
|
|
"0\n"
|
|
" 3\n"
|
|
"Dash Dot ____ _ ____ _\n"
|
|
" 72\n"
|
|
"65\n"
|
|
" 73\n"
|
|
"4\n"
|
|
" 40\n"
|
|
"2.0\n"
|
|
" 49\n"
|
|
"1.25\n"
|
|
" 49\n"
|
|
"-0.25\n"
|
|
" 49\n"
|
|
"0.25\n"
|
|
" 49\n"
|
|
"-0.25\n"
|
|
" 0\n"
|
|
"LTYPE\n"
|
|
" 5\n"
|
|
"411\n"
|
|
" 2\n"
|
|
"DASHED\n"
|
|
" 70\n"
|
|
"0\n"
|
|
" 3\n"
|
|
"Dashed __ __ __ __ __\n"
|
|
" 72\n"
|
|
"65\n"
|
|
" 73\n"
|
|
"2\n"
|
|
" 40\n"
|
|
"0.75\n"
|
|
" 49\n"
|
|
"0.5\n"
|
|
" 49\n"
|
|
"-0.25\n"
|
|
" 0\n"
|
|
"LTYPE\n"
|
|
" 5\n"
|
|
"43B\n"
|
|
" 2\n"
|
|
"DOTTED\n"
|
|
" 70\n"
|
|
"0\n"
|
|
" 3\n"
|
|
"Dotted . . . .\n"
|
|
" 72\n"
|
|
"65\n"
|
|
" 73\n"
|
|
"2\n"
|
|
" 40\n"
|
|
"0.2\n"
|
|
" 49\n"
|
|
"0.0\n"
|
|
" 49\n"
|
|
"-0.2\n"
|
|
" 0\n"
|
|
"ENDTAB\n",
|
|
GetMeasurementDirective() );
|
|
|
|
// Text styles table
|
|
// Defines 4 text styles, one for each bold/italic combination
|
|
fputs( " 0\n"
|
|
"TABLE\n"
|
|
" 2\n"
|
|
"STYLE\n"
|
|
" 70\n"
|
|
"4\n", outputFile );
|
|
|
|
static const char *style_name[4] = {"KICAD", "KICADB", "KICADI", "KICADBI"};
|
|
for(int i = 0; i < 4; i++ )
|
|
{
|
|
fprintf( outputFile,
|
|
" 0\n"
|
|
"STYLE\n"
|
|
" 2\n"
|
|
"%s\n" // Style name
|
|
" 70\n"
|
|
"0\n" // Standard flags
|
|
" 40\n"
|
|
"0\n" // Non-fixed height text
|
|
" 41\n"
|
|
"1\n" // Width factor (base)
|
|
" 42\n"
|
|
"1\n" // Last height (mandatory)
|
|
" 50\n"
|
|
"%g\n" // Oblique angle
|
|
" 71\n"
|
|
"0\n" // Generation flags (default)
|
|
" 3\n"
|
|
// The standard ISO font (when kicad is build with it
|
|
// the dxf text in acad matches *perfectly*)
|
|
"isocp.shx\n", // Font name (when not bigfont)
|
|
// Apply a 15 degree angle to italic text
|
|
style_name[i], i < 2 ? 0 : DXF_OBLIQUE_ANGLE );
|
|
}
|
|
|
|
EDA_COLOR_T numLayers = NBCOLORS;
|
|
|
|
// If printing in monochrome, only output the black layer
|
|
if( !GetColorMode() )
|
|
numLayers = static_cast<EDA_COLOR_T>( 1 );
|
|
|
|
// Layer table - one layer per color
|
|
fprintf( outputFile,
|
|
" 0\n"
|
|
"ENDTAB\n"
|
|
" 0\n"
|
|
"TABLE\n"
|
|
" 2\n"
|
|
"LAYER\n"
|
|
" 70\n"
|
|
"%d\n", numLayers );
|
|
|
|
/* The layer/colors palette. The acad/DXF palette is divided in 3 zones:
|
|
|
|
- The primary colors (1 - 9)
|
|
- An HSV zone (10-250, 5 values x 2 saturations x 10 hues
|
|
- Greys (251 - 255)
|
|
*/
|
|
|
|
for( EDA_COLOR_T i = BLACK; i < numLayers; i = NextColor(i) )
|
|
{
|
|
fprintf( outputFile,
|
|
" 0\n"
|
|
"LAYER\n"
|
|
" 2\n"
|
|
"%s\n" // Layer name
|
|
" 70\n"
|
|
"0\n" // Standard flags
|
|
" 62\n"
|
|
"%d\n" // Color number
|
|
" 6\n"
|
|
"CONTINUOUS\n",// Linetype name
|
|
dxf_layer[i].name, dxf_layer[i].color );
|
|
}
|
|
|
|
// End of layer table, begin entities
|
|
fputs( " 0\n"
|
|
"ENDTAB\n"
|
|
" 0\n"
|
|
"ENDSEC\n"
|
|
" 0\n"
|
|
"SECTION\n"
|
|
" 2\n"
|
|
"ENTITIES\n", outputFile );
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool DXF_PLOTTER::EndPlot()
|
|
{
|
|
wxASSERT( outputFile );
|
|
|
|
// DXF FOOTER
|
|
fputs( " 0\n"
|
|
"ENDSEC\n"
|
|
" 0\n"
|
|
"EOF\n", outputFile );
|
|
fclose( outputFile );
|
|
outputFile = NULL;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* The DXF exporter handles 'colors' as layers...
|
|
*/
|
|
void DXF_PLOTTER::SetColor( COLOR4D color )
|
|
{
|
|
if( ( colorMode )
|
|
|| ( color == COLOR4D::BLACK )
|
|
|| ( color == COLOR4D::WHITE ) )
|
|
{
|
|
m_currentColor = color;
|
|
}
|
|
else
|
|
m_currentColor = COLOR4D::BLACK;
|
|
}
|
|
|
|
/**
|
|
* DXF rectangle: fill not supported
|
|
*/
|
|
void DXF_PLOTTER::Rect( const wxPoint& p1, const wxPoint& p2, FILL_T fill, int width )
|
|
{
|
|
wxASSERT( outputFile );
|
|
MoveTo( p1 );
|
|
LineTo( wxPoint( p1.x, p2.y ) );
|
|
LineTo( wxPoint( p2.x, p2.y ) );
|
|
LineTo( wxPoint( p2.x, p1.y ) );
|
|
FinishTo( wxPoint( p1.x, p1.y ) );
|
|
}
|
|
|
|
|
|
/**
|
|
* DXF circle: full functionality; it even does 'fills' drawing a
|
|
* circle with a dual-arc polyline wide as the radius.
|
|
*
|
|
* I could use this trick to do other filled primitives
|
|
*/
|
|
void DXF_PLOTTER::Circle( const wxPoint& centre, int diameter, FILL_T fill, int width )
|
|
{
|
|
wxASSERT( outputFile );
|
|
double radius = userToDeviceSize( diameter / 2 );
|
|
DPOINT centre_dev = userToDeviceCoordinates( centre );
|
|
if( radius > 0 )
|
|
{
|
|
wxString cname = getDXFColorName( m_currentColor );
|
|
|
|
if( !fill )
|
|
{
|
|
fprintf( outputFile, "0\nCIRCLE\n8\n%s\n10\n%g\n20\n%g\n40\n%g\n",
|
|
TO_UTF8( cname ),
|
|
centre_dev.x, centre_dev.y, radius );
|
|
}
|
|
|
|
if( fill == FILLED_SHAPE )
|
|
{
|
|
double r = radius*0.5;
|
|
fprintf( outputFile, "0\nPOLYLINE\n");
|
|
fprintf( outputFile, "8\n%s\n66\n1\n70\n1\n", TO_UTF8( cname ));
|
|
fprintf( outputFile, "40\n%g\n41\n%g\n", radius, radius);
|
|
fprintf( outputFile, "0\nVERTEX\n8\n%s\n", TO_UTF8( cname ));
|
|
fprintf( outputFile, "10\n%g\n 20\n%g\n42\n1.0\n",
|
|
centre_dev.x-r, centre_dev.y );
|
|
fprintf( outputFile, "0\nVERTEX\n8\n%s\n", TO_UTF8( cname ));
|
|
fprintf( outputFile, "10\n%g\n 20\n%g\n42\n1.0\n",
|
|
centre_dev.x+r, centre_dev.y );
|
|
fprintf( outputFile, "0\nSEQEND\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* DXF polygon: doesn't fill it but at least it close the filled ones
|
|
* DXF does not know thick outline.
|
|
* It does not know thhick segments, therefore filled polygons with thick outline
|
|
* are converted to inflated polygon by aWidth/2
|
|
*/
|
|
void DXF_PLOTTER::PlotPoly( const std::vector<wxPoint>& aCornerList,
|
|
FILL_T aFill, int aWidth, void * aData )
|
|
{
|
|
if( aCornerList.size() <= 1 )
|
|
return;
|
|
|
|
unsigned last = aCornerList.size() - 1;
|
|
|
|
// Plot outlines with lines (thickness = 0) to define the polygon
|
|
if( aWidth <= 0 )
|
|
{
|
|
MoveTo( aCornerList[0] );
|
|
|
|
for( unsigned ii = 1; ii < aCornerList.size(); ii++ )
|
|
LineTo( aCornerList[ii] );
|
|
|
|
// Close polygon if 'fill' requested
|
|
if( aFill )
|
|
{
|
|
if( aCornerList[last] != aCornerList[0] )
|
|
LineTo( aCornerList[0] );
|
|
}
|
|
|
|
PenFinish();
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
// if the polygon outline has thickness, and is not filled
|
|
// (i.e. is a polyline) plot outlines with thick segments
|
|
if( aWidth > 0 && !aFill )
|
|
{
|
|
MoveTo( aCornerList[0] );
|
|
|
|
for( unsigned ii = 1; ii < aCornerList.size(); ii++ )
|
|
ThickSegment( aCornerList[ii-1], aCornerList[ii],
|
|
aWidth, FILLED, NULL );
|
|
|
|
return;
|
|
}
|
|
|
|
// The polygon outline has thickness, and is filled
|
|
// Build and plot the polygon which contains the initial
|
|
// polygon and its thick outline
|
|
SHAPE_POLY_SET bufferOutline;
|
|
SHAPE_POLY_SET bufferPolybase;
|
|
|
|
bufferPolybase.NewOutline();
|
|
|
|
// enter outline as polygon:
|
|
for( unsigned ii = 1; ii < aCornerList.size(); ii++ )
|
|
{
|
|
TransformSegmentToPolygon( bufferOutline,
|
|
aCornerList[ ii - 1 ], aCornerList[ ii ], GetPlotterArcHighDef(), aWidth );
|
|
}
|
|
|
|
// enter the initial polygon:
|
|
for( unsigned ii = 0; ii < aCornerList.size(); ii++ )
|
|
{
|
|
bufferPolybase.Append( aCornerList[ii] );
|
|
}
|
|
|
|
// Merge polygons to build the polygon which contains the initial
|
|
// polygon and its thick outline
|
|
|
|
// create the outline which contains thick outline:
|
|
bufferPolybase.BooleanAdd( bufferOutline, SHAPE_POLY_SET::PM_FAST );
|
|
bufferPolybase.Fracture( SHAPE_POLY_SET::PM_FAST );
|
|
|
|
if( bufferPolybase.OutlineCount() < 1 ) // should not happen
|
|
return;
|
|
|
|
const SHAPE_LINE_CHAIN& path = bufferPolybase.COutline( 0 );
|
|
|
|
if( path.PointCount() < 2 ) // should not happen
|
|
return;
|
|
|
|
// Now, output the final polygon to DXF file:
|
|
last = path.PointCount() - 1;
|
|
VECTOR2I point = path.CPoint( 0 );
|
|
|
|
wxPoint startPoint( point.x, point.y );
|
|
MoveTo( startPoint );
|
|
|
|
for( int ii = 1; ii < path.PointCount(); ii++ )
|
|
{
|
|
point = path.CPoint( ii );
|
|
LineTo( wxPoint( point.x, point.y ) );
|
|
}
|
|
|
|
// Close polygon, if needed
|
|
point = path.CPoint( last );
|
|
wxPoint endPoint( point.x, point.y );
|
|
|
|
if( endPoint != startPoint )
|
|
LineTo( startPoint );
|
|
|
|
PenFinish();
|
|
}
|
|
|
|
|
|
void DXF_PLOTTER::PenTo( const wxPoint& pos, char plume )
|
|
{
|
|
wxASSERT( outputFile );
|
|
if( plume == 'Z' )
|
|
{
|
|
return;
|
|
}
|
|
DPOINT pos_dev = userToDeviceCoordinates( pos );
|
|
DPOINT pen_lastpos_dev = userToDeviceCoordinates( penLastpos );
|
|
|
|
if( penLastpos != pos && plume == 'D' )
|
|
{
|
|
wxASSERT( m_currentLineType >= 0 && m_currentLineType < 4 );
|
|
// DXF LINE
|
|
wxString cname = getDXFColorName( m_currentColor );
|
|
const char *lname = getDXFLineType( (PlotDashType) m_currentLineType );
|
|
fprintf( outputFile, "0\nLINE\n8\n%s\n6\n%s\n10\n%g\n20\n%g\n11\n%g\n21\n%g\n",
|
|
TO_UTF8( cname ), lname,
|
|
pen_lastpos_dev.x, pen_lastpos_dev.y, pos_dev.x, pos_dev.y );
|
|
}
|
|
penLastpos = pos;
|
|
}
|
|
|
|
|
|
void DXF_PLOTTER::SetDash( int dashed )
|
|
{
|
|
wxASSERT( dashed >= 0 && dashed < 4 );
|
|
m_currentLineType = dashed;
|
|
}
|
|
|
|
|
|
void DXF_PLOTTER::ThickSegment( const wxPoint& aStart, const wxPoint& aEnd, int aWidth,
|
|
EDA_DRAW_MODE_T aPlotMode, void* aData )
|
|
{
|
|
if( aPlotMode == SKETCH )
|
|
{
|
|
std::vector<wxPoint> cornerList;
|
|
SHAPE_POLY_SET outlineBuffer;
|
|
TransformOvalToPolygon( outlineBuffer, aStart, aEnd, aWidth, GetPlotterArcHighDef() );
|
|
const SHAPE_LINE_CHAIN& path = outlineBuffer.COutline( 0 );
|
|
|
|
cornerList.reserve( path.PointCount() );
|
|
for( int jj = 0; jj < path.PointCount(); jj++ )
|
|
cornerList.emplace_back( path.CPoint( jj ).x, path.CPoint( jj ).y );
|
|
|
|
// Ensure the polygon is closed
|
|
if( cornerList[0] != cornerList[cornerList.size() - 1] )
|
|
cornerList.push_back( cornerList[0] );
|
|
|
|
PlotPoly( cornerList, NO_FILL );
|
|
}
|
|
else
|
|
{
|
|
MoveTo( aStart );
|
|
FinishTo( aEnd );
|
|
}
|
|
}
|
|
|
|
/* Plot an arc in DXF format
|
|
* Filling is not supported
|
|
*/
|
|
void DXF_PLOTTER::Arc( const wxPoint& centre, double StAngle, double EndAngle, int radius,
|
|
FILL_T fill, int width )
|
|
{
|
|
wxASSERT( outputFile );
|
|
|
|
if( radius <= 0 )
|
|
return;
|
|
|
|
// In DXF, arcs are drawn CCW.
|
|
// In Kicad, arcs are CW or CCW
|
|
// If StAngle > EndAngle, it is CW. So transform it to CCW
|
|
if( StAngle > EndAngle )
|
|
{
|
|
std::swap( StAngle, EndAngle );
|
|
}
|
|
|
|
DPOINT centre_dev = userToDeviceCoordinates( centre );
|
|
double radius_dev = userToDeviceSize( radius );
|
|
|
|
// Emit a DXF ARC entity
|
|
wxString cname = getDXFColorName( m_currentColor );
|
|
fprintf( outputFile,
|
|
"0\nARC\n8\n%s\n10\n%g\n20\n%g\n40\n%g\n50\n%g\n51\n%g\n",
|
|
TO_UTF8( cname ),
|
|
centre_dev.x, centre_dev.y, radius_dev,
|
|
StAngle / 10.0, EndAngle / 10.0 );
|
|
}
|
|
|
|
/**
|
|
* DXF oval pad: always done in sketch mode
|
|
*/
|
|
void DXF_PLOTTER::FlashPadOval( const wxPoint& pos, const wxSize& aSize, double orient,
|
|
EDA_DRAW_MODE_T trace_mode, void* aData )
|
|
{
|
|
wxASSERT( outputFile );
|
|
wxSize size( aSize );
|
|
|
|
/* The chip is reduced to an oval tablet with size.y > size.x
|
|
* (Oval vertical orientation 0) */
|
|
if( size.x > size.y )
|
|
{
|
|
std::swap( size.x, size.y );
|
|
orient = AddAngles( orient, 900 );
|
|
}
|
|
|
|
sketchOval( pos, size, orient, -1 );
|
|
}
|
|
|
|
|
|
/**
|
|
* DXF round pad: always done in sketch mode; it could be filled but it isn't
|
|
* pretty if other kinds of pad aren't...
|
|
*/
|
|
void DXF_PLOTTER::FlashPadCircle( const wxPoint& pos, int diametre,
|
|
EDA_DRAW_MODE_T trace_mode, void* aData )
|
|
{
|
|
wxASSERT( outputFile );
|
|
Circle( pos, diametre, NO_FILL );
|
|
}
|
|
|
|
|
|
/**
|
|
* DXF rectangular pad: alwayd done in sketch mode
|
|
*/
|
|
void DXF_PLOTTER::FlashPadRect( const wxPoint& pos, const wxSize& padsize,
|
|
double orient, EDA_DRAW_MODE_T trace_mode, void* aData )
|
|
{
|
|
wxASSERT( outputFile );
|
|
wxSize size;
|
|
int ox, oy, fx, fy;
|
|
|
|
size.x = padsize.x / 2;
|
|
size.y = padsize.y / 2;
|
|
|
|
if( size.x < 0 )
|
|
size.x = 0;
|
|
if( size.y < 0 )
|
|
size.y = 0;
|
|
|
|
// If a dimension is zero, the trace is reduced to 1 line
|
|
if( size.x == 0 )
|
|
{
|
|
ox = pos.x;
|
|
oy = pos.y - size.y;
|
|
RotatePoint( &ox, &oy, pos.x, pos.y, orient );
|
|
fx = pos.x;
|
|
fy = pos.y + size.y;
|
|
RotatePoint( &fx, &fy, pos.x, pos.y, orient );
|
|
MoveTo( wxPoint( ox, oy ) );
|
|
FinishTo( wxPoint( fx, fy ) );
|
|
return;
|
|
}
|
|
if( size.y == 0 )
|
|
{
|
|
ox = pos.x - size.x;
|
|
oy = pos.y;
|
|
RotatePoint( &ox, &oy, pos.x, pos.y, orient );
|
|
fx = pos.x + size.x;
|
|
fy = pos.y;
|
|
RotatePoint( &fx, &fy, pos.x, pos.y, orient );
|
|
MoveTo( wxPoint( ox, oy ) );
|
|
FinishTo( wxPoint( fx, fy ) );
|
|
return;
|
|
}
|
|
|
|
ox = pos.x - size.x;
|
|
oy = pos.y - size.y;
|
|
RotatePoint( &ox, &oy, pos.x, pos.y, orient );
|
|
MoveTo( wxPoint( ox, oy ) );
|
|
|
|
fx = pos.x - size.x;
|
|
fy = pos.y + size.y;
|
|
RotatePoint( &fx, &fy, pos.x, pos.y, orient );
|
|
LineTo( wxPoint( fx, fy ) );
|
|
|
|
fx = pos.x + size.x;
|
|
fy = pos.y + size.y;
|
|
RotatePoint( &fx, &fy, pos.x, pos.y, orient );
|
|
LineTo( wxPoint( fx, fy ) );
|
|
|
|
fx = pos.x + size.x;
|
|
fy = pos.y - size.y;
|
|
RotatePoint( &fx, &fy, pos.x, pos.y, orient );
|
|
LineTo( wxPoint( fx, fy ) );
|
|
|
|
FinishTo( wxPoint( ox, oy ) );
|
|
}
|
|
|
|
void DXF_PLOTTER::FlashPadRoundRect( const wxPoint& aPadPos, const wxSize& aSize,
|
|
int aCornerRadius, double aOrient,
|
|
EDA_DRAW_MODE_T aTraceMode, void* aData )
|
|
{
|
|
SHAPE_POLY_SET outline;
|
|
TransformRoundChamferedRectToPolygon( outline, aPadPos, aSize, aOrient,
|
|
aCornerRadius, 0.0, 0, GetPlotterArcHighDef() );
|
|
|
|
// TransformRoundRectToPolygon creates only one convex polygon
|
|
SHAPE_LINE_CHAIN& poly = outline.Outline( 0 );
|
|
|
|
MoveTo( wxPoint( poly.CPoint( 0 ).x, poly.CPoint( 0 ).y ) );
|
|
|
|
for( int ii = 1; ii < poly.PointCount(); ++ii )
|
|
LineTo( wxPoint( poly.CPoint( ii ).x, poly.CPoint( ii ).y ) );
|
|
|
|
FinishTo( wxPoint( poly.CPoint( 0 ).x, poly.CPoint( 0 ).y ) );
|
|
}
|
|
|
|
void DXF_PLOTTER::FlashPadCustom( const wxPoint& aPadPos, const wxSize& aSize,
|
|
SHAPE_POLY_SET* aPolygons,
|
|
EDA_DRAW_MODE_T aTraceMode, void* aData )
|
|
{
|
|
for( int cnt = 0; cnt < aPolygons->OutlineCount(); ++cnt )
|
|
{
|
|
SHAPE_LINE_CHAIN& poly = aPolygons->Outline( cnt );
|
|
|
|
MoveTo( wxPoint( poly.CPoint( 0 ).x, poly.CPoint( 0 ).y ) );
|
|
|
|
for( int ii = 1; ii < poly.PointCount(); ++ii )
|
|
LineTo( wxPoint( poly.CPoint( ii ).x, poly.CPoint( ii ).y ) );
|
|
|
|
FinishTo( wxPoint( poly.CPoint( 0 ).x, poly.CPoint( 0 ).y ) );
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* DXF trapezoidal pad: only sketch mode is supported
|
|
*/
|
|
void DXF_PLOTTER::FlashPadTrapez( const wxPoint& aPadPos, const wxPoint *aCorners,
|
|
double aPadOrient, EDA_DRAW_MODE_T aTrace_Mode, void* aData )
|
|
{
|
|
wxASSERT( outputFile );
|
|
wxPoint coord[4]; /* coord actual corners of a trapezoidal trace */
|
|
|
|
for( int ii = 0; ii < 4; ii++ )
|
|
{
|
|
coord[ii] = aCorners[ii];
|
|
RotatePoint( &coord[ii], aPadOrient );
|
|
coord[ii] += aPadPos;
|
|
}
|
|
|
|
// Plot edge:
|
|
MoveTo( coord[0] );
|
|
LineTo( coord[1] );
|
|
LineTo( coord[2] );
|
|
LineTo( coord[3] );
|
|
FinishTo( coord[0] );
|
|
}
|
|
|
|
|
|
void DXF_PLOTTER::FlashRegularPolygon( const wxPoint& aShapePos,
|
|
int aRadius, int aCornerCount,
|
|
double aOrient, EDA_DRAW_MODE_T aTraceMode, void* aData )
|
|
{
|
|
// Do nothing
|
|
wxASSERT( 0 );
|
|
}
|
|
|
|
|
|
/**
|
|
* Checks if a given string contains non-ASCII characters.
|
|
* FIXME: the performance of this code is really poor, but in this case it can be
|
|
* acceptable because the plot operation is not called very often.
|
|
* @param string String to check
|
|
* @return true if it contains some non-ASCII character, false if all characters are
|
|
* inside ASCII range (<=255).
|
|
*/
|
|
bool containsNonAsciiChars( const wxString& string )
|
|
{
|
|
for( unsigned i = 0; i < string.length(); i++ )
|
|
{
|
|
wchar_t ch = string[i];
|
|
if( ch > 255 )
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void DXF_PLOTTER::Text( const wxPoint& aPos,
|
|
COLOR4D aColor,
|
|
const wxString& aText,
|
|
double aOrient,
|
|
const wxSize& aSize,
|
|
enum EDA_TEXT_HJUSTIFY_T aH_justify,
|
|
enum EDA_TEXT_VJUSTIFY_T aV_justify,
|
|
int aWidth,
|
|
bool aItalic,
|
|
bool aBold,
|
|
bool aMultilineAllowed,
|
|
void* aData )
|
|
{
|
|
// Fix me: see how to use DXF text mode for multiline texts
|
|
if( aMultilineAllowed && !aText.Contains( wxT( "\n" ) ) )
|
|
aMultilineAllowed = false; // the text has only one line.
|
|
|
|
if( textAsLines || containsNonAsciiChars( aText ) || aMultilineAllowed )
|
|
{
|
|
// output text as graphics.
|
|
// Perhaps multiline texts could be handled as DXF text entity
|
|
// but I do not want spend time about this (JPC)
|
|
PLOTTER::Text( aPos, aColor, aText, aOrient, aSize, aH_justify, aV_justify,
|
|
aWidth, aItalic, aBold, aMultilineAllowed );
|
|
}
|
|
else
|
|
{
|
|
/* Emit text as a text entity. This loses formatting and shape but it's
|
|
more useful as a CAD object */
|
|
DPOINT origin_dev = userToDeviceCoordinates( aPos );
|
|
SetColor( aColor );
|
|
wxString cname = getDXFColorName( m_currentColor );
|
|
DPOINT size_dev = userToDeviceSize( aSize );
|
|
int h_code = 0, v_code = 0;
|
|
switch( aH_justify )
|
|
{
|
|
case GR_TEXT_HJUSTIFY_LEFT:
|
|
h_code = 0;
|
|
break;
|
|
case GR_TEXT_HJUSTIFY_CENTER:
|
|
h_code = 1;
|
|
break;
|
|
case GR_TEXT_HJUSTIFY_RIGHT:
|
|
h_code = 2;
|
|
break;
|
|
}
|
|
switch( aV_justify )
|
|
{
|
|
case GR_TEXT_VJUSTIFY_TOP:
|
|
v_code = 3;
|
|
break;
|
|
case GR_TEXT_VJUSTIFY_CENTER:
|
|
v_code = 2;
|
|
break;
|
|
case GR_TEXT_VJUSTIFY_BOTTOM:
|
|
v_code = 1;
|
|
break;
|
|
}
|
|
|
|
// Position, size, rotation and alignment
|
|
// The two alignment point usages is somewhat idiot (see the DXF ref)
|
|
// Anyway since we don't use the fit/aligned options, they're the same
|
|
fprintf( outputFile,
|
|
" 0\n"
|
|
"TEXT\n"
|
|
" 7\n"
|
|
"%s\n" // Text style
|
|
" 8\n"
|
|
"%s\n" // Layer name
|
|
" 10\n"
|
|
"%g\n" // First point X
|
|
" 11\n"
|
|
"%g\n" // Second point X
|
|
" 20\n"
|
|
"%g\n" // First point Y
|
|
" 21\n"
|
|
"%g\n" // Second point Y
|
|
" 40\n"
|
|
"%g\n" // Text height
|
|
" 41\n"
|
|
"%g\n" // Width factor
|
|
" 50\n"
|
|
"%g\n" // Rotation
|
|
" 51\n"
|
|
"%g\n" // Oblique angle
|
|
" 71\n"
|
|
"%d\n" // Mirror flags
|
|
" 72\n"
|
|
"%d\n" // H alignment
|
|
" 73\n"
|
|
"%d\n", // V alignment
|
|
aBold ? (aItalic ? "KICADBI" : "KICADB")
|
|
: (aItalic ? "KICADI" : "KICAD"),
|
|
TO_UTF8( cname ),
|
|
origin_dev.x, origin_dev.x,
|
|
origin_dev.y, origin_dev.y,
|
|
size_dev.y, fabs( size_dev.x / size_dev.y ),
|
|
aOrient / 10.0,
|
|
aItalic ? DXF_OBLIQUE_ANGLE : 0,
|
|
size_dev.x < 0 ? 2 : 0, // X mirror flag
|
|
h_code, v_code );
|
|
|
|
/* There are two issue in emitting the text:
|
|
- Our overline character (~) must be converted to the appropriate
|
|
control sequence %%O or %%o
|
|
- Text encoding in DXF is more or less unspecified since depends on
|
|
the DXF declared version, the acad version reading it *and* some
|
|
system variables to be put in the header handled only by newer acads
|
|
Also before R15 unicode simply is not supported (you need to use
|
|
bigfonts which are a massive PITA). Common denominator solution:
|
|
use Latin1 (and however someone could choke on it, anyway). Sorry
|
|
for the extended latin people. If somewant want to try fixing this
|
|
recent version seems to use UTF-8 (and not UCS2 like the rest of
|
|
Windows)
|
|
|
|
XXX Actually there is a *third* issue: older DXF formats are limited
|
|
to 255 bytes records (it was later raised to 2048); since I'm lazy
|
|
and text so long is not probable I just don't implement this rule.
|
|
If someone is interested in fixing this, you have to emit the first
|
|
partial lines with group code 3 (max 250 bytes each) and then finish
|
|
with a group code 1 (less than 250 bytes). The DXF refs explains it
|
|
in no more details...
|
|
*/
|
|
|
|
bool overlining = false;
|
|
|
|
fputs( " 1\n", outputFile );
|
|
|
|
for( unsigned i = 0; i < aText.length(); i++ )
|
|
{
|
|
/* Here I do a bad thing: writing the output one byte at a time!
|
|
but today I'm lazy and I have no idea on how to coerce a Unicode
|
|
wxString to spit out latin1 encoded text ...
|
|
|
|
Atleast stdio is *supposed* to do output buffering, so there is
|
|
hope is not too slow */
|
|
wchar_t ch = aText[i];
|
|
|
|
if( ch > 255 )
|
|
{
|
|
// I can't encode this...
|
|
putc( '?', outputFile );
|
|
}
|
|
else
|
|
{
|
|
if( ch == '~' )
|
|
{
|
|
if( ++i == aText.length() )
|
|
break;
|
|
|
|
ch = aText[i];
|
|
|
|
if( ch == '~' )
|
|
{
|
|
// double ~ is really a ~ so go ahead and process the second one
|
|
|
|
// so what about a triple ~? It could be a real ~ followed by an
|
|
// overbar, or it could be an overbar followed by a real ~. The old
|
|
// eeschema algorithm did the later so we will too....
|
|
if( i + i < aText.length() && aText[i + 1] == '~' )
|
|
{
|
|
// eat the first two and toggle overbar
|
|
++i;
|
|
fputs( overlining ? "%%o" : "%%O", outputFile );
|
|
overlining = !overlining;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Handle the overline toggle
|
|
fputs( overlining ? "%%o" : "%%O", outputFile );
|
|
overlining = !overlining;
|
|
}
|
|
}
|
|
|
|
putc( ch, outputFile );
|
|
}
|
|
}
|
|
putc( '\n', outputFile );
|
|
}
|
|
}
|
|
|