kicad-source/eeschema/sch_line.cpp
2025-09-13 02:51:00 -07:00

1265 lines
37 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <base_units.h>
#include <bitmaps.h>
#include <string_utils.h>
#include <core/mirror.h>
#include <sch_painter.h>
#include <sch_plotter.h>
#include <geometry/shape_segment.h>
#include <geometry/geometry_utils.h>
#include <sch_line.h>
#include <sch_edit_frame.h>
#include <settings/color_settings.h>
#include <connection_graph.h>
#include <project/project_file.h>
#include <project/net_settings.h>
#include <trigo.h>
#include <board_item.h>
#include <api/api_enums.h>
#include <api/api_utils.h>
#include <api/schematic/schematic_types.pb.h>
#include <properties/property.h>
SCH_LINE::SCH_LINE( const VECTOR2I& pos, int layer ) :
SCH_ITEM( nullptr, SCH_LINE_T )
{
m_start = pos;
m_end = pos;
m_stroke.SetWidth( 0 );
m_stroke.SetLineStyle( LINE_STYLE::DEFAULT );
m_stroke.SetColor( COLOR4D::UNSPECIFIED );
switch( layer )
{
default: m_layer = LAYER_NOTES; break;
case LAYER_WIRE: m_layer = LAYER_WIRE; break;
case LAYER_BUS: m_layer = LAYER_BUS; break;
}
if( layer == LAYER_NOTES )
m_startIsDangling = m_endIsDangling = true;
else
m_startIsDangling = m_endIsDangling = false;
if( layer == LAYER_WIRE )
m_lastResolvedWidth = schIUScale.MilsToIU( DEFAULT_WIRE_WIDTH_MILS );
else if( layer == LAYER_BUS )
m_lastResolvedWidth = schIUScale.MilsToIU( DEFAULT_BUS_WIDTH_MILS );
else
m_lastResolvedWidth = schIUScale.MilsToIU( DEFAULT_LINE_WIDTH_MILS );
m_lastResolvedLineStyle = LINE_STYLE::SOLID;
m_lastResolvedColor = COLOR4D::UNSPECIFIED;
}
SCH_LINE::SCH_LINE( const SCH_LINE& aLine ) :
SCH_ITEM( aLine )
{
m_start = aLine.m_start;
m_end = aLine.m_end;
m_stroke = aLine.m_stroke;
m_startIsDangling = aLine.m_startIsDangling;
m_endIsDangling = aLine.m_endIsDangling;
m_lastResolvedLineStyle = aLine.m_lastResolvedLineStyle;
m_lastResolvedWidth = aLine.m_lastResolvedWidth;
m_lastResolvedColor = aLine.m_lastResolvedColor;
m_operatingPoint = aLine.m_operatingPoint;
// Don't apply groups to cloned lines. We have too many areas where we clone them
// temporarily, then modify/split/join them in the line movement routines after the
// segments are committed. Rely on the commit framework to add the lines to the
// entered group as appropriate.
m_group = nullptr;
}
void SCH_LINE::Serialize( google::protobuf::Any &aContainer ) const
{
kiapi::schematic::types::Line line;
line.mutable_id()->set_value( m_Uuid.AsStdString() );
kiapi::common::PackVector2( *line.mutable_start(), GetStartPoint() );
kiapi::common::PackVector2( *line.mutable_end(), GetEndPoint() );
line.set_layer(
ToProtoEnum<SCH_LAYER_ID, kiapi::schematic::types::SchematicLayer>( GetLayer() ) );
aContainer.PackFrom( line );
}
bool SCH_LINE::Deserialize( const google::protobuf::Any &aContainer )
{
kiapi::schematic::types::Line line;
if( !aContainer.UnpackTo( &line ) )
return false;
const_cast<KIID&>( m_Uuid ) = KIID( line.id().value() );
SetStartPoint( kiapi::common::UnpackVector2( line.start() ) );
SetEndPoint( kiapi::common::UnpackVector2( line.end() ) );
SCH_LAYER_ID layer =
FromProtoEnum<SCH_LAYER_ID, kiapi::schematic::types::SchematicLayer>( line.layer() );
switch( layer )
{
case LAYER_WIRE:
case LAYER_BUS:
case LAYER_NOTES:
SetLayer( layer );
break;
default:
break;
}
return true;
}
wxString SCH_LINE::GetFriendlyName() const
{
switch( GetLayer() )
{
case LAYER_WIRE: return _( "Wire" );
case LAYER_BUS: return _( "Bus" );
default: return _( "Graphic Line" );
}
}
EDA_ITEM* SCH_LINE::Clone() const
{
return new SCH_LINE( *this );
}
void SCH_LINE::Move( const VECTOR2I& aOffset )
{
m_start += aOffset;
m_end += aOffset;
}
void SCH_LINE::MoveStart( const VECTOR2I& aOffset )
{
m_start += aOffset;
}
void SCH_LINE::MoveEnd( const VECTOR2I& aOffset )
{
m_end += aOffset;
}
#if defined(DEBUG)
void SCH_LINE::Show( int nestLevel, std::ostream& os ) const
{
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str()
<< " layer=\"" << m_layer << '"'
<< " startIsDangling=\"" << m_startIsDangling
<< '"' << " endIsDangling=\""
<< m_endIsDangling << '"' << ">"
<< " <start" << m_start << "/>"
<< " <end" << m_end << "/>" << "</"
<< GetClass().Lower().mb_str() << ">\n";
}
#endif
std::vector<int> SCH_LINE::ViewGetLayers() const
{
if( IsWire() || IsBus() )
return { LAYER_DANGLING, m_layer, LAYER_SELECTION_SHADOWS, LAYER_NET_COLOR_HIGHLIGHT,
LAYER_OP_VOLTAGES };
return { LAYER_DANGLING, m_layer, LAYER_SELECTION_SHADOWS, LAYER_OP_VOLTAGES };
}
double SCH_LINE::ViewGetLOD( int aLayer, const KIGFX::VIEW* aView ) const
{
if( aLayer == LAYER_OP_VOLTAGES )
{
if( m_start == m_end )
return LOD_HIDE;
const int height = std::abs( m_end.y - m_start.y );
// Operating points will be shown only if zoom is appropriate
if( height > 0 )
return lodScaleForThreshold( aView, height, schIUScale.mmToIU( 5 ) );
const int width = std::abs( m_end.x - m_start.x );
return lodScaleForThreshold( aView, width, schIUScale.mmToIU( 15 ) );
}
// Other layers are always drawn.
return LOD_SHOW;
}
const BOX2I SCH_LINE::GetBoundingBox() const
{
int width = GetPenWidth() / 2;
int xmin = std::min( m_start.x, m_end.x ) - width;
int ymin = std::min( m_start.y, m_end.y ) - width;
int xmax = std::max( m_start.x, m_end.x ) + width + 1;
int ymax = std::max( m_start.y, m_end.y ) + width + 1;
BOX2I ret( VECTOR2I( xmin, ymin ), VECTOR2I( xmax - xmin, ymax - ymin ) );
return ret;
}
double SCH_LINE::GetLength() const
{
return m_start.Distance( m_end );
}
void SCH_LINE::SetLineColor( const COLOR4D& aColor )
{
m_stroke.SetColor( aColor );
m_lastResolvedColor = GetLineColor();
}
void SCH_LINE::SetLineColor( const double r, const double g, const double b, const double a )
{
COLOR4D newColor(r, g, b, a);
if( newColor == COLOR4D::UNSPECIFIED )
{
m_stroke.SetColor( COLOR4D::UNSPECIFIED );
}
else
{
// Eeschema does not allow alpha channel in colors
newColor.a = 1.0;
m_stroke.SetColor( newColor );
}
}
COLOR4D SCH_LINE::GetLineColor() const
{
if( m_stroke.GetColor() != COLOR4D::UNSPECIFIED )
m_lastResolvedColor = m_stroke.GetColor();
else if( !IsConnectable() )
m_lastResolvedColor = COLOR4D::UNSPECIFIED;
else if( !IsConnectivityDirty() )
m_lastResolvedColor = GetEffectiveNetClass()->GetSchematicColor();
return m_lastResolvedColor;
}
void SCH_LINE::SetLineStyle( const LINE_STYLE aStyle )
{
m_stroke.SetLineStyle( aStyle );
m_lastResolvedLineStyle = GetEffectiveLineStyle();
}
LINE_STYLE SCH_LINE::GetLineStyle() const
{
if( IsGraphicLine() && m_stroke.GetLineStyle() == LINE_STYLE::DEFAULT )
return LINE_STYLE::SOLID;
else
return m_stroke.GetLineStyle();
}
LINE_STYLE SCH_LINE::GetEffectiveLineStyle() const
{
if( m_stroke.GetLineStyle() != LINE_STYLE::DEFAULT )
m_lastResolvedLineStyle = m_stroke.GetLineStyle();
else if( !IsConnectable() )
m_lastResolvedLineStyle = LINE_STYLE::SOLID;
else if( !IsConnectivityDirty() )
m_lastResolvedLineStyle = (LINE_STYLE) GetEffectiveNetClass()->GetLineStyle();
return m_lastResolvedLineStyle;
}
void SCH_LINE::SetLineWidth( const int aSize )
{
m_stroke.SetWidth( aSize );
m_lastResolvedWidth = GetPenWidth();
}
int SCH_LINE::GetPenWidth() const
{
SCHEMATIC* schematic = Schematic();
switch ( m_layer )
{
default:
if( m_stroke.GetWidth() > 0 )
return m_stroke.GetWidth();
if( schematic )
return schematic->Settings().m_DefaultLineWidth;
return schIUScale.MilsToIU( DEFAULT_LINE_WIDTH_MILS );
case LAYER_WIRE:
if( m_stroke.GetWidth() > 0 )
m_lastResolvedWidth = m_stroke.GetWidth();
else if( !IsConnectivityDirty() )
m_lastResolvedWidth = GetEffectiveNetClass()->GetWireWidth();
return m_lastResolvedWidth;
case LAYER_BUS:
if( m_stroke.GetWidth() > 0 )
m_lastResolvedWidth = m_stroke.GetWidth();
else if( !IsConnectivityDirty() )
m_lastResolvedWidth = GetEffectiveNetClass()->GetBusWidth();
return m_lastResolvedWidth;
}
}
void SCH_LINE::MirrorVertically( int aCenter )
{
if( m_flags & STARTPOINT )
MIRROR( m_start.y, aCenter );
if( m_flags & ENDPOINT )
MIRROR( m_end.y, aCenter );
}
void SCH_LINE::MirrorHorizontally( int aCenter )
{
if( m_flags & STARTPOINT )
MIRROR( m_start.x, aCenter );
if( m_flags & ENDPOINT )
MIRROR( m_end.x, aCenter );
}
void SCH_LINE::Rotate( const VECTOR2I& aCenter, bool aRotateCCW )
{
if( m_flags & STARTPOINT )
RotatePoint( m_start, aCenter, aRotateCCW ? ANGLE_90 : ANGLE_270 );
if( m_flags & ENDPOINT )
RotatePoint( m_end, aCenter, aRotateCCW ? ANGLE_90 : ANGLE_270 );
}
int SCH_LINE::GetAngleFrom( const VECTOR2I& aPoint ) const
{
VECTOR2I vec;
if( aPoint == m_start )
vec = m_end - aPoint;
else
vec = m_start - aPoint;
return KiROUND( EDA_ANGLE( vec ).AsDegrees() );
}
int SCH_LINE::GetReverseAngleFrom( const VECTOR2I& aPoint ) const
{
VECTOR2I vec;
if( aPoint == m_end )
vec = m_start - aPoint;
else
vec = m_end - aPoint;
return KiROUND( EDA_ANGLE( vec ).AsDegrees() );
}
bool SCH_LINE::IsParallel( const SCH_LINE* aLine ) const
{
wxCHECK_MSG( aLine != nullptr && aLine->Type() == SCH_LINE_T, false,
wxT( "Cannot test line segment for overlap." ) );
VECTOR2I firstSeg = m_end - m_start;
VECTOR2I secondSeg = aLine->m_end - aLine->m_start;
// Use long long here to avoid overflow in calculations
return !( (long long) firstSeg.x * secondSeg.y - (long long) firstSeg.y * secondSeg.x );
}
SCH_LINE* SCH_LINE::MergeOverlap( SCH_SCREEN* aScreen, SCH_LINE* aLine, bool aCheckJunctions )
{
auto less =
[]( const VECTOR2I& lhs, const VECTOR2I& rhs ) -> bool
{
if( lhs.x == rhs.x )
return lhs.y < rhs.y;
return lhs.x < rhs.x;
};
wxCHECK_MSG( aLine != nullptr && aLine->Type() == SCH_LINE_T, nullptr,
wxT( "Cannot test line segment for overlap." ) );
if( this == aLine || GetLayer() != aLine->GetLayer() )
return nullptr;
VECTOR2I leftmost_start = aLine->m_start;
VECTOR2I leftmost_end = aLine->m_end;
VECTOR2I rightmost_start = m_start;
VECTOR2I rightmost_end = m_end;
// We place the start to the left and below the end of both lines
if( leftmost_start != std::min( { leftmost_start, leftmost_end }, less ) )
std::swap( leftmost_start, leftmost_end );
if( rightmost_start != std::min( { rightmost_start, rightmost_end }, less ) )
std::swap( rightmost_start, rightmost_end );
// - leftmost is the line that starts farthest to the left
// - other is the line that is _not_ leftmost
// - rightmost is the line that ends farthest to the right. This may or may not be 'other'
// as the second line may be completely covered by the first.
if( less( rightmost_start, leftmost_start ) )
{
std::swap( leftmost_start, rightmost_start );
std::swap( leftmost_end, rightmost_end );
}
VECTOR2I other_start = rightmost_start;
VECTOR2I other_end = rightmost_end;
if( less( rightmost_end, leftmost_end ) )
{
rightmost_start = leftmost_start;
rightmost_end = leftmost_end;
}
// If we end one before the beginning of the other, no overlap is possible
if( less( leftmost_end, other_start ) )
{
return nullptr;
}
// Search for a common end:
if( ( leftmost_start == other_start ) && ( leftmost_end == other_end ) ) // Trivial case
{
SCH_LINE* ret = new SCH_LINE( *aLine );
ret->SetStartPoint( leftmost_start );
ret->SetEndPoint( leftmost_end );
ret->SetConnectivityDirty( true );
if( IsSelected() || aLine->IsSelected() )
ret->SetSelected();
return ret;
}
bool colinear = false;
/* Test alignment: */
if( ( leftmost_start.y == leftmost_end.y ) &&
( other_start.y == other_end.y ) ) // Horizontal segment
{
colinear = ( leftmost_start.y == other_start.y );
}
else if( ( leftmost_start.x == leftmost_end.x ) &&
( other_start.x == other_end.x ) ) // Vertical segment
{
colinear = ( leftmost_start.x == other_start.x );
}
else
{
// We use long long here to avoid overflow -- it enforces promotion
// The slope of the left-most line is dy/dx. Then we check that the slope from the
// left most start to the right most start is the same as well as the slope from the
// left most start to right most end.
long long dx = leftmost_end.x - leftmost_start.x;
long long dy = leftmost_end.y - leftmost_start.y;
colinear = ( ( ( other_start.y - leftmost_start.y ) * dx ==
( other_start.x - leftmost_start.x ) * dy ) &&
( ( other_end.y - leftmost_start.y ) * dx ==
( other_end.x - leftmost_start.x ) * dy ) );
}
if( !colinear )
return nullptr;
// We either have a true overlap or colinear touching segments. We always want to merge
// the former, but the later only get merged if there no junction at the touch point.
bool touching = leftmost_end == rightmost_start;
if( touching && aCheckJunctions && aScreen->IsJunction( leftmost_end ) )
return nullptr;
// Make a new segment that merges the 2 segments
leftmost_end = rightmost_end;
SCH_LINE* ret = new SCH_LINE( *aLine );
ret->SetStartPoint( leftmost_start );
ret->SetEndPoint( leftmost_end );
ret->SetConnectivityDirty( true );
if( IsSelected() || aLine->IsSelected() )
ret->SetSelected();
return ret;
}
SCH_LINE* SCH_LINE::BreakAt( SCH_COMMIT* aCommit, const VECTOR2I& aPoint )
{
SCH_LINE* newSegment = static_cast<SCH_LINE*>( Duplicate( true /* addToParentGroup */, aCommit ) );
newSegment->SetStartPoint( aPoint );
newSegment->SetConnectivityDirty( true );
SetEndPoint( aPoint );
return newSegment;
}
SCH_LINE* SCH_LINE::NonGroupAware_BreakAt( const VECTOR2I& aPoint )
{
SCH_LINE* newSegment = static_cast<SCH_LINE*>( Duplicate( false /* addToParentGroup */, nullptr ) );
newSegment->SetStartPoint( aPoint );
newSegment->SetConnectivityDirty( true );
SetEndPoint( aPoint );
return newSegment;
}
void SCH_LINE::GetEndPoints( std::vector <DANGLING_END_ITEM>& aItemList )
{
if( IsConnectable() )
{
aItemList.emplace_back( IsBus() ? BUS_END : WIRE_END, this, m_start );
aItemList.emplace_back( IsBus() ? BUS_END : WIRE_END, this, m_end );
}
}
bool SCH_LINE::UpdateDanglingState( std::vector<DANGLING_END_ITEM>& aItemListByType,
std::vector<DANGLING_END_ITEM>& aItemListByPos,
const SCH_SHEET_PATH* aPath )
{
if( !IsConnectable() )
return false;
bool previousStartState = m_startIsDangling;
bool previousEndState = m_endIsDangling;
m_startIsDangling = m_endIsDangling = true;
for( auto it = DANGLING_END_ITEM_HELPER::get_lower_pos( aItemListByPos, m_start );
it < aItemListByPos.end() && it->GetPosition() == m_start; it++ )
{
DANGLING_END_ITEM& item = *it;
if( item.GetItem() == this )
continue;
if( ( IsWire() && item.GetType() != BUS_END && item.GetType() != BUS_ENTRY_END )
|| ( IsBus() && item.GetType() != WIRE_END && item.GetType() != PIN_END ) )
{
m_startIsDangling = false;
break;
}
}
for( auto it = DANGLING_END_ITEM_HELPER::get_lower_pos( aItemListByPos, m_end );
it < aItemListByPos.end() && it->GetPosition() == m_end; it++ )
{
DANGLING_END_ITEM& item = *it;
if( item.GetItem() == this )
continue;
if( ( IsWire() && item.GetType() != BUS_END && item.GetType() != BUS_ENTRY_END )
|| ( IsBus() && item.GetType() != WIRE_END && item.GetType() != PIN_END ) )
{
m_endIsDangling = false;
break;
}
}
// We only use the bus dangling state for automatic line starting, so we don't care if it
// has changed or not (and returning true will result in extra work)
if( IsBus() )
return false;
return previousStartState != m_startIsDangling || previousEndState != m_endIsDangling;
}
bool SCH_LINE::IsConnectable() const
{
if( m_layer == LAYER_WIRE || m_layer == LAYER_BUS )
return true;
return false;
}
bool SCH_LINE::CanConnect( const SCH_ITEM* aItem ) const
{
switch( aItem->Type() )
{
case SCH_NO_CONNECT_T:
case SCH_SYMBOL_T:
return IsWire();
case SCH_JUNCTION_T:
case SCH_LABEL_T:
case SCH_GLOBAL_LABEL_T:
case SCH_HIER_LABEL_T:
case SCH_DIRECTIVE_LABEL_T:
case SCH_BUS_WIRE_ENTRY_T:
case SCH_SHEET_T:
case SCH_SHEET_PIN_T:
return IsWire() || IsBus();
default:
return m_layer == aItem->GetLayer();
}
}
bool SCH_LINE::HasConnectivityChanges( const SCH_ITEM* aItem,
const SCH_SHEET_PATH* aInstance ) const
{
// Do not compare to ourself.
if( aItem == this || !IsConnectable() )
return false;
const SCH_LINE* line = dynamic_cast<const SCH_LINE*>( aItem );
// Don't compare against a different SCH_ITEM.
wxCHECK( line, false );
if( GetStartPoint() != line->GetStartPoint() )
return true;
return GetEndPoint() != line->GetEndPoint();
}
std::vector<VECTOR2I> SCH_LINE::GetConnectionPoints() const
{
return { m_start, m_end };
}
bool SCH_LINE::ConnectionPropagatesTo( const EDA_ITEM* aItem ) const
{
switch( aItem->Type() )
{
case SCH_LINE_T:
return IsBus() == static_cast<const SCH_LINE*>( aItem )->IsBus();
default:
return true;
}
}
void SCH_LINE::GetSelectedPoints( std::vector<VECTOR2I>& aPoints ) const
{
if( m_flags & STARTPOINT )
aPoints.push_back( m_start );
if( m_flags & ENDPOINT )
aPoints.push_back( m_end );
}
wxString SCH_LINE::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const
{
wxString txtfmt;
if( m_start.x == m_end.x )
{
switch( m_layer )
{
case LAYER_WIRE: txtfmt = _( "Vertical Wire, length %s" ); break;
case LAYER_BUS: txtfmt = _( "Vertical Bus, length %s" ); break;
default: txtfmt = _( "Vertical Graphic Line, length %s" ); break;
}
}
else if( m_start.y == m_end.y )
{
switch( m_layer )
{
case LAYER_WIRE: txtfmt = _( "Horizontal Wire, length %s" ); break;
case LAYER_BUS: txtfmt = _( "Horizontal Bus, length %s" ); break;
default: txtfmt = _( "Horizontal Graphic Line, length %s" ); break;
}
}
else
{
switch( m_layer )
{
case LAYER_WIRE: txtfmt = _( "Wire, length %s" ); break;
case LAYER_BUS: txtfmt = _( "Bus, length %s" ); break;
default: txtfmt = _( "Graphic Line, length %s" ); break;
}
}
return wxString::Format( txtfmt,
aUnitsProvider->MessageTextFromValue( m_start.Distance( m_end ) ) );
}
BITMAPS SCH_LINE::GetMenuImage() const
{
if( m_layer == LAYER_NOTES )
return BITMAPS::add_dashed_line;
else if( m_layer == LAYER_WIRE )
return BITMAPS::add_line;
return BITMAPS::add_bus;
}
bool SCH_LINE::operator <( const SCH_ITEM& aItem ) const
{
if( Type() != aItem.Type() )
return Type() < aItem.Type();
const SCH_LINE* line = static_cast<const SCH_LINE*>( &aItem );
if( GetLayer() != line->GetLayer() )
return GetLayer() < line->GetLayer();
if( GetStartPoint().x != line->GetStartPoint().x )
return GetStartPoint().x < line->GetStartPoint().x;
if( GetStartPoint().y != line->GetStartPoint().y )
return GetStartPoint().y < line->GetStartPoint().y;
if( GetEndPoint().x != line->GetEndPoint().x )
return GetEndPoint().x < line->GetEndPoint().x;
return GetEndPoint().y < line->GetEndPoint().y;
}
bool SCH_LINE::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
// Performance enhancement for connection-building
if( aPosition == m_start || aPosition == m_end )
return true;
if( aAccuracy >= 0 )
aAccuracy += GetPenWidth() / 2;
else
aAccuracy = abs( aAccuracy );
return TestSegmentHit( aPosition, m_start, m_end, aAccuracy );
}
bool SCH_LINE::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
if( m_flags & (STRUCT_DELETED | SKIP_STRUCT ) )
return false;
BOX2I rect = aRect;
if ( aAccuracy )
rect.Inflate( aAccuracy );
if( aContained )
return rect.Contains( m_start ) && rect.Contains( m_end );
return rect.Intersects( m_start, m_end );
}
bool SCH_LINE::HitTest( const SHAPE_LINE_CHAIN& aPoly, bool aContained ) const
{
if( m_flags & (STRUCT_DELETED | SKIP_STRUCT ) )
return false;
SHAPE_SEGMENT line( m_start, m_end, GetPenWidth() );
return KIGEOM::ShapeHitTest( aPoly, line, aContained );
}
void SCH_LINE::swapData( SCH_ITEM* aItem )
{
SCH_LINE* item = (SCH_LINE*) aItem;
std::swap( m_start, item->m_start );
std::swap( m_end, item->m_end );
std::swap( m_startIsDangling, item->m_startIsDangling );
std::swap( m_endIsDangling, item->m_endIsDangling );
std::swap( m_stroke, item->m_stroke );
}
bool SCH_LINE::doIsConnected( const VECTOR2I& aPosition ) const
{
if( m_layer != LAYER_WIRE && m_layer != LAYER_BUS )
return false;
return IsEndPoint( aPosition );
}
void SCH_LINE::Plot( PLOTTER* aPlotter, bool aBackground, const SCH_PLOT_OPTS& aPlotOpts,
int aUnit, int aBodyStyle, const VECTOR2I& aOffset, bool aDimmed )
{
if( aBackground )
return;
SCH_RENDER_SETTINGS* renderSettings = getRenderSettings( aPlotter );
int penWidth = GetEffectivePenWidth( renderSettings );
COLOR4D color = GetLineColor();
if( color == COLOR4D::UNSPECIFIED )
color = renderSettings->GetLayerColor( GetLayer() );
aPlotter->SetColor( color );
aPlotter->SetCurrentLineWidth( penWidth );
aPlotter->SetDash( penWidth, GetEffectiveLineStyle() );
aPlotter->MoveTo( m_start );
aPlotter->FinishTo( m_end );
aPlotter->SetDash( penWidth, LINE_STYLE::SOLID );
// Plot attributes to a hypertext menu
std::vector<wxString> properties;
BOX2I bbox = GetBoundingBox();
bbox.Inflate( penWidth * 3 );
if( aPlotOpts.m_PDFPropertyPopups )
{
if( GetLayer() == LAYER_WIRE )
{
if( SCH_CONNECTION* connection = Connection() )
{
properties.emplace_back( wxString::Format( wxT( "!%s = %s" ),
_( "Net" ),
connection->Name() ) );
properties.emplace_back( wxString::Format( wxT( "!%s = %s" ),
_( "Resolved netclass" ),
GetEffectiveNetClass()->GetHumanReadableName() ) );
}
}
else if( GetLayer() == LAYER_BUS )
{
if( SCH_CONNECTION* connection = Connection() )
{
for( const std::shared_ptr<SCH_CONNECTION>& member : connection->Members() )
properties.emplace_back( wxT( "!" ) + member->Name() );
}
}
if( !properties.empty() )
aPlotter->HyperlinkMenu( bbox, properties );
}
}
void SCH_LINE::SetPosition( const VECTOR2I& aPosition )
{
m_end = m_end - ( m_start - aPosition );
m_start = aPosition;
}
void SCH_LINE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg;
switch( GetLayer() )
{
case LAYER_WIRE: msg = _( "Wire" ); break;
case LAYER_BUS: msg = _( "Bus" ); break;
default: msg = _( "Graphical" ); break;
}
aList.emplace_back( _( "Line Type" ), msg );
LINE_STYLE lineStyle = GetStroke().GetLineStyle();
if( GetEffectiveLineStyle() != lineStyle )
aList.emplace_back( _( "Line Style" ), _( "from netclass" ) );
else
m_stroke.GetMsgPanelInfo( aFrame, aList, true, false );
SCH_CONNECTION* conn = nullptr;
if( !IsConnectivityDirty() && dynamic_cast<SCH_EDIT_FRAME*>( aFrame ) )
conn = Connection();
if( conn )
{
conn->AppendInfoToMsgPanel( aList );
if( !conn->IsBus() )
{
aList.emplace_back( _( "Resolved Netclass" ),
UnescapeString( GetEffectiveNetClass()->GetHumanReadableName() ) );
}
}
}
bool SCH_LINE::IsGraphicLine() const
{
return ( GetLayer() == LAYER_NOTES );
}
bool SCH_LINE::IsWire() const
{
return ( GetLayer() == LAYER_WIRE );
}
bool SCH_LINE::IsBus() const
{
return ( GetLayer() == LAYER_BUS );
}
bool SCH_LINE::operator==( const SCH_ITEM& aOther ) const
{
if( Type() != aOther.Type() )
return false;
const SCH_LINE& other = static_cast<const SCH_LINE&>( aOther );
if( GetLayer() != other.GetLayer() )
return false;
if( m_start != other.m_start )
return false;
if( m_end != other.m_end )
return false;
if( m_stroke.GetWidth() != other.m_stroke.GetWidth() )
return false;
if( m_stroke.GetColor() != other.m_stroke.GetColor() )
return false;
if( m_stroke.GetLineStyle() != other.m_stroke.GetLineStyle() )
return false;
return true;
}
double SCH_LINE::Similarity( const SCH_ITEM& aOther ) const
{
if( m_Uuid == aOther.m_Uuid )
return 1.0;
if( Type() != aOther.Type() )
return 0.0;
const SCH_LINE& other = static_cast<const SCH_LINE&>( aOther );
if( GetLayer() != other.GetLayer() )
return 0.0;
double similarity = 1.0;
if( m_start != other.m_start )
similarity *= 0.9;
if( m_end != other.m_end )
similarity *= 0.9;
if( m_stroke.GetWidth() != other.m_stroke.GetWidth() )
similarity *= 0.9;
if( m_stroke.GetColor() != other.m_stroke.GetColor() )
similarity *= 0.9;
if( m_stroke.GetLineStyle() != other.m_stroke.GetLineStyle() )
similarity *= 0.9;
return similarity;
}
bool SCH_LINE::ShouldHopOver( const SCH_LINE* aLine ) const
{
// try to find if this should hop over aLine. Horizontal wires have preference for hop.
bool isMeVertical = ( m_end.x == m_start.x );
bool isCandidateVertical = ( aLine->GetEndPoint().x == aLine->GetStartPoint().x );
// Vertical vs. Horizontal: Horizontal should hop
if( isMeVertical && !isCandidateVertical )
return false;
if( isCandidateVertical && !isMeVertical )
return true;
// Both this and aLine have a slope. Try to find the best candidate
double slopeMe = ( m_end.y - m_start.y ) / (double) ( m_end.x - m_start.x );
double slopeCandidate = ( aLine->GetEndPoint().y - aLine->GetStartPoint().y )
/ (double) ( aLine->GetEndPoint().x - aLine->GetStartPoint().x );
if( fabs( slopeMe ) == fabs( slopeCandidate ) ) // Can easily happen with 45 deg wires
return slopeMe < slopeCandidate; // signs are certainly different
return fabs( slopeMe ) < fabs( slopeCandidate ); // The shallower line should hop
}
std::vector<VECTOR3I> SCH_LINE::BuildWireWithHopShape( const SCH_SCREEN* aScreen,
double aArcRadius ) const
{
// Note: Points are VECTOR3D, with Z coord used as flag
// for segments: start point and end point have the Z coord = 0
// for arcs: start point middle point and end point have the Z coord = 1
std::vector<VECTOR3I> wire_shape; // List of coordinates:
// 2 points for a segment, 3 points for an arc
if( !IsWire() )
{
wire_shape.emplace_back( GetStartPoint().x,GetStartPoint().y, 0 );
wire_shape.emplace_back( GetEndPoint().x, GetEndPoint().y, 0 );
return wire_shape;
}
std::vector<SCH_LINE*> existingWires; // wires to test (candidates)
std::vector<VECTOR2I> intersections;
for( SCH_ITEM* item : aScreen->Items().Overlapping( SCH_LINE_T, GetBoundingBox() ) )
{
SCH_LINE* line = static_cast<SCH_LINE*>( item );
if( line->IsWire() )
existingWires.push_back( line );
}
VECTOR2I currentLineStartPoint = GetStartPoint();
VECTOR2I currentLineEndPoint = GetEndPoint();
for( SCH_LINE* existingLine : existingWires )
{
VECTOR2I extLineStartPoint = existingLine->GetStartPoint();
VECTOR2I extLineEndPoint = existingLine->GetEndPoint();
if( extLineStartPoint == currentLineStartPoint && extLineEndPoint == currentLineEndPoint )
continue;
if( !ShouldHopOver( existingLine ) )
continue;
SEG currentSegment = SEG( currentLineStartPoint, currentLineEndPoint );
SEG existingSegment = SEG( extLineStartPoint, extLineEndPoint );
if( OPT_VECTOR2I intersect = currentSegment.Intersect( existingSegment, true, false ) )
{
if( IsEndPoint( *intersect ) || existingLine->IsEndPoint( *intersect ) )
continue;
// Ensure intersecting point is not yet entered. it can be already just entered
// if more than two wires are intersecting at the same point,
// creating bad hop over shapes for the current wire
if( intersections.size() == 0 || intersections.back() != *intersect )
intersections.push_back( *intersect );
}
}
if( intersections.empty() )
{
wire_shape.emplace_back( currentLineStartPoint.x, currentLineStartPoint.y, 0 );
wire_shape.emplace_back( currentLineEndPoint.x, currentLineEndPoint.y, 0 );
}
else
{
auto getDistance =
[]( const VECTOR2I& a, const VECTOR2I& b ) -> double
{
return std::sqrt( std::pow( a.x - b.x, 2 ) + std::pow( a.y - b.y, 2 ) );
};
std::sort( intersections.begin(), intersections.end(),
[&]( const VECTOR2I& a, const VECTOR2I& b )
{
return getDistance( GetStartPoint(), a ) < getDistance( GetStartPoint(), b );
} );
VECTOR2I currentStart = GetStartPoint();
double arcRadius = aArcRadius;
for( const VECTOR2I& hopMid : intersections )
{
// Calculate the angle of the line from start point to end point in radians
double lineAngle = std::atan2( GetEndPoint().y - GetStartPoint().y,
GetEndPoint().x - GetStartPoint().x );
// Convert the angle from radians to degrees
double lineAngleDeg = lineAngle * ( 180.0f / M_PI );
// Normalize the angle to be between 0 and 360 degrees
if( lineAngleDeg < 0 )
lineAngleDeg += 360;
double startAngle = lineAngleDeg;
double endAngle = startAngle + 180.0f;
// Adjust the end angle if it exceeds 360 degrees
if( endAngle >= 360.0 )
endAngle -= 360.0;
// Convert start and end angles from degrees to radians
double startAngleRad = startAngle * ( M_PI / 180.0f );
double endAngleRad = endAngle * ( M_PI / 180.0f );
VECTOR2I arcMidPoint = {
hopMid.x + static_cast<int>( arcRadius
* cos( ( startAngleRad + endAngleRad ) / 2.0f ) ),
hopMid.y - static_cast<int>( arcRadius
* sin( ( startAngleRad + endAngleRad ) / 2.0f ) )
};
VECTOR2I beforeHop = hopMid - VECTOR2I( arcRadius * std::cos( lineAngle ),
arcRadius * std::sin( lineAngle ) );
VECTOR2I afterHop = hopMid + VECTOR2I( arcRadius * std::cos( lineAngle ),
arcRadius * std::sin( lineAngle ) );
// Draw the line from the current start point to the before-hop point
wire_shape.emplace_back( currentStart.x, currentStart.y, 0 );
wire_shape.emplace_back( beforeHop.x, beforeHop.y, 0 );
// Create an arc object
SHAPE_ARC arc( beforeHop, arcMidPoint, afterHop, 0 );
wire_shape.emplace_back( beforeHop.x, beforeHop.y, 1 );
wire_shape.emplace_back( arcMidPoint.x, arcMidPoint.y, 1 );
wire_shape.emplace_back( afterHop.x, afterHop.y, 1 );
currentStart = afterHop;
}
// Draw the final line from the current start point to the end point of the original line
wire_shape.emplace_back( currentStart. x,currentStart.y, 0 );
wire_shape.emplace_back( GetEndPoint().x, GetEndPoint().y, 0 );
}
return wire_shape;
}
static struct SCH_LINE_DESC
{
SCH_LINE_DESC()
{
ENUM_MAP<LINE_STYLE>& lineStyleEnum = ENUM_MAP<LINE_STYLE>::Instance();
if( lineStyleEnum.Choices().GetCount() == 0 )
{
lineStyleEnum.Map( LINE_STYLE::SOLID, _HKI( "Solid" ) )
.Map( LINE_STYLE::DASH, _HKI( "Dashed" ) )
.Map( LINE_STYLE::DOT, _HKI( "Dotted" ) )
.Map( LINE_STYLE::DASHDOT, _HKI( "Dash-Dot" ) )
.Map( LINE_STYLE::DASHDOTDOT, _HKI( "Dash-Dot-Dot" ) );
}
ENUM_MAP<WIRE_STYLE>& wireLineStyleEnum = ENUM_MAP<WIRE_STYLE>::Instance();
if( wireLineStyleEnum.Choices().GetCount() == 0 )
{
wireLineStyleEnum.Map( WIRE_STYLE::DEFAULT, _HKI( "Default" ) )
.Map( WIRE_STYLE::SOLID, _HKI( "Solid" ) )
.Map( WIRE_STYLE::DASH, _HKI( "Dashed" ) )
.Map( WIRE_STYLE::DOT, _HKI( "Dotted" ) )
.Map( WIRE_STYLE::DASHDOT, _HKI( "Dash-Dot" ) )
.Map( WIRE_STYLE::DASHDOTDOT, _HKI( "Dash-Dot-Dot" ) );
}
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( SCH_LINE );
propMgr.InheritsAfter( TYPE_HASH( SCH_LINE ), TYPE_HASH( SCH_ITEM ) );
auto isGraphicLine =
[]( INSPECTABLE* aItem ) -> bool
{
if( SCH_LINE* line = dynamic_cast<SCH_LINE*>( aItem ) )
return line->IsGraphicLine();
return false;
};
auto isWireOrBus =
[]( INSPECTABLE* aItem ) -> bool
{
if( SCH_LINE* line = dynamic_cast<SCH_LINE*>( aItem ) )
return line->IsWire() || line->IsBus();
return false;
};
propMgr.AddProperty( new PROPERTY_ENUM<SCH_LINE, LINE_STYLE>( _HKI( "Line Style" ),
&SCH_LINE::SetLineStyle, &SCH_LINE::GetLineStyle ) )
.SetAvailableFunc( isGraphicLine );
propMgr.AddProperty( new PROPERTY_ENUM<SCH_LINE, WIRE_STYLE>( _HKI( "Line Style" ),
&SCH_LINE::SetWireStyle, &SCH_LINE::GetWireStyle ) )
.SetAvailableFunc( isWireOrBus );
propMgr.AddProperty( new PROPERTY<SCH_LINE, int>( _HKI( "Line Width" ),
&SCH_LINE::SetLineWidth, &SCH_LINE::GetLineWidth, PROPERTY_DISPLAY::PT_SIZE ) );
propMgr.AddProperty( new PROPERTY<SCH_LINE, COLOR4D>( _HKI( "Color" ),
&SCH_LINE::SetLineColor, &SCH_LINE::GetLineColor ) );
}
} _SCH_LINE_DESC;
IMPLEMENT_ENUM_TO_WXANY( WIRE_STYLE )