kicad-source/common/plotters/HPGL_plotter.cpp
jean-pierre charras 15cc368918 Gerber plotter: prepare optimization of aperture macros type free polygons.
They are used for chamfered round rect pads, and can be used for custom shaped pads.
No actual change currently, but the shape rotation of custom pads and chamfered rr pads
can be now used in gerber plots.
2021-01-23 21:15:27 +01:00

975 lines
29 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file HPGL_plotter.cpp
* @brief Kicad: specialized plotter for HPGL files format
* Since this plot engine is mostly intended for import in external programs,
* sadly HPGL/2 isn't supported a lot... some of the primitives use overlapped
* strokes to fill the shape
*/
/* Some HPGL commands:
* Note: the HPGL unit is 25 micrometers
* All commands MUST be terminated by a semi-colon or a linefeed.
* Spaces can NOT be substituted for required commas in the syntax of a command.
*
*
* AA (Arc Absolute): Angle is a floating point # (requires non integer value)
* Draws an arc with the center at (X,Y).
* A positive angle creates a counter-clockwise arc.
* If the chord angle is specified,
* this will be the number of degrees used for stepping around the arc.
* If no value is given then a default value of five degrees is used.
* AA x, y, a {,b};
*
* AR (Arc Relative):
* AR Dx, Dy, a {, b};
*
* CA (Alternate Character Set):
* CA {n};
*
* CI (Circle):
* CI r {,b};
*
* CP (Character Plot):
* CP {h, v};
* h [-127.9999 .. 127.9999] Anzahl der Zeichen horizontal
* v [-127.9999 .. 127.9999] Anzahl der Zeichen vertikal
*
* CS (Standard Character Set):
* CS {n};
*
* DR (Relative Direction for Label Text):
* DR s, a;
*
* DI (Absolute Direction for Label Text):
* DI {s, a};
*
* DT (Define Terminator - this character becomes unavailable except to terminate a label string.
* Default is ^C control-C):
* DT t;
*
* EA (rEctangle Absolute - Unfilled, from current position to diagonal x,y):
* EA x, y;
*
* ER (rEctangle Relative - Unfilled, from current position to diagonal x,y):
* ER x,y;
*
* FT (Fill Type):
* FT {s {,l {a}}};
*
* IM (Input Mask):
* IM {f};
*
* IN (Initialize): This command instructs the controller to begin processing the HPGL plot file.
* Without this, the commands in the file are received but never executed.
* If multiple IN s are found during execution of the file,
* the controller performs a Pause/Cancel operation.
* All motion from the previous job, yet to be executed, is lost,
* and the new information is executed.
* IN;
*
* IP Input P1 and P2:
* IP {P1x, P1y {, P2x, P2y}};
*
* IW (Input Window):
* IW {XUL, YUL, XOR, YOR};
*
* LB (Label):
* LB c1 .. cn t;
*
* PA (Plot Absolute): Moves to an absolute HPGL position and sets absolute mode for
* future PU and PD commands. If no arguments follow the command,
* only absolute mode is set.
* PA {x1, y1 {{PU|PD|,} ..., ..., xn, yn}};
* P1x, P1y, P2x, P2y [Integer in ASCII]
*
* PD (Pen Down): Executes <current pen> pen then moves to the requested position
* if one is specified. This position is dependent on whether absolute
* or relative mode is set. This command performs no motion in 3-D mode,
* but the outputs and feedrates are affected.
* PD {x, y};
*
* PM Polygon mode
* associated commands:
* PM2 End polygon mode
* FP Fill polygon
* EP Draw polygon outline
*
* PR (Plot Relative): Moves to the relative position specified and sets relative mode
* for future PU and PD commands.
* If no arguments follow the command, only relative mode is set.
* PR {Dx1, Dy1 {{PU|PD|,} ..., ..., Dxn, Dyn}};
*
* PS (Paper Size):
* PS {n};
*
* PT (Pen Thickness): in mm
* PT {l};
*
* PU (Pen Up): Executes <current pen> pen then moves to the requested position
* if one is specified. This position is dependent on whether absolute
* or relative mode is set.
* This command performs no motion in 3-D mode, but the outputs
* and feedrates are affected.
* PU {x, y};
*
* RA (Rectangle Absolute - Filled, from current position to diagonal x,y):
* RA x, y;
*
* RO (Rotate Coordinate System):
* RO;
*
* RR (Rectangle Relative - Filled, from current position to diagonal x,y):
* RR x, y;
*
* SA (Select Alternate Set):
* SA;
*
* SC (Scale):
* SC {Xmin, Xmax, Ymin, Ymax};
*
* SI (Absolute Character Size):
* SI b, h;
* b [-127.9999 .. 127.9999, keine 0]
* h [-127.9999 .. 127.9999, keine 0]
*
* SL (Character Slant):
* SL {a};
* a [-3.5 .. -0.5, 0.5 .. 3.5]
*
* SP (Select Pen): Selects a new pen or tool for use.
* If no pen number or a value of zero is given,
* the controller performs an EOF (end of file command).
* Once an EOF is performed, no motion is executed,
* until a new IN command is received.
* SP n;
*
* SR (Relative Character Size):
* SR {b, h};
* b [-127.9999 .. 127.9999, keine 0]
* h [-127.9999 .. 127.9999, keine 0]
*
* SS (Select Standard Set):
* SS;
*
* TL (Tick Length):
* TL {tp {, tm}};
*
* UC (User Defined Character):
* UC {i,} x1, y1, {i,} x2, y2, ... {i,} xn, yn;
*
* VS (Velocity Select):
* VS {v {, n}};
* v [1 .. 40] in cm/s
* n [1 .. 8]
*
* XT (X Tick):
* XT;
*
* YT (Y Tick):
* YT;
*/
#include <cstdio>
#include <eda_base_frame.h>
#include <fill_type.h>
#include <kicad_string.h>
#include <convert_basic_shapes_to_polygon.h>
#include <math/util.h> // for KiROUND
#include <trigo.h>
#include "plotter_hpgl.h"
/// Compute the distance between two DPOINT points.
static double dpoint_dist( DPOINT a, DPOINT b );
// The hpgl command to close a polygon def, fill it and plot outline:
// PM 2; ends the polygon definition and closes it if not closed
// FP; fills the polygon
// EP; draws the polygon outline. It usually gives a better look to the filled polygon
static const char hpgl_end_polygon_cmd[] = "PM 2; FP; EP;\n";
// HPGL scale factor (1 Plotter Logical Unit = 1/40mm = 25 micrometers)
// PLUsPERDECIMIL = (25.4 / 10000) / 0.025
static const double PLUsPERDECIMIL = 0.1016;
HPGL_PLOTTER::HPGL_PLOTTER()
: arcTargetChordLength( 0 ),
arcMinChordDegrees( 5.0 ),
dashType( PLOT_DASH_TYPE::SOLID ),
useUserCoords( false ),
fitUserCoords( false ),
m_current_item( nullptr )
{
SetPenSpeed( 40 ); // Default pen speed = 40 cm/s; Pen speed is *always* in cm
SetPenNumber( 1 ); // Default pen num = 1
SetPenDiameter( 0.0 );
}
void HPGL_PLOTTER::SetViewport( const wxPoint& aOffset, double aIusPerDecimil,
double aScale, bool aMirror )
{
m_plotOffset = aOffset;
m_plotScale = aScale;
m_IUsPerDecimil = aIusPerDecimil;
m_iuPerDeviceUnit = PLUsPERDECIMIL / aIusPerDecimil;
/* Compute the paper size in IUs */
m_paperSize = m_pageInfo.GetSizeMils();
m_paperSize.x *= 10.0 * aIusPerDecimil;
m_paperSize.y *= 10.0 * aIusPerDecimil;
m_plotMirror = aMirror;
}
void HPGL_PLOTTER::SetTargetChordLength( double chord_len )
{
arcTargetChordLength = userToDeviceSize( chord_len );
}
/**
* At the start of the HPGL plot pen speed and number are requested
*/
bool HPGL_PLOTTER::StartPlot()
{
wxASSERT( m_outputFile );
fprintf( m_outputFile, "IN;VS%d;PU;PA;SP%d;\n", penSpeed, penNumber );
// Set HPGL Pen Thickness (in mm) (usefull in polygon fill command)
double penThicknessMM = userToDeviceSize( penDiameter )/40;
fprintf( m_outputFile, "PT %.1f;\n", penThicknessMM );
return true;
}
/**
* HPGL end of plot: sort and emit graphics, pen return and release
*/
bool HPGL_PLOTTER::EndPlot()
{
wxASSERT( m_outputFile );
fputs( "PU;\n", m_outputFile );
flushItem();
sortItems( m_items );
if( m_items.size() > 0 )
{
if( useUserCoords )
{
if( fitUserCoords )
{
BOX2D bbox = m_items.front().bbox;
for( HPGL_ITEM const& item : m_items )
{
bbox.Merge( item.bbox );
}
fprintf( m_outputFile, "SC%.0f,%.0f,%.0f,%.0f;\n", bbox.GetX(),
bbox.GetX() + bbox.GetWidth(), bbox.GetY(),
bbox.GetY() + bbox.GetHeight() );
}
else
{
DPOINT pagesize_dev( m_paperSize * m_iuPerDeviceUnit );
fprintf( m_outputFile, "SC%.0f,%.0f,%.0f,%.0f;\n", 0., pagesize_dev.x, 0.,
pagesize_dev.y );
}
}
DPOINT loc = m_items.begin()->loc_start;
bool pen_up = true;
PLOT_DASH_TYPE current_dash = PLOT_DASH_TYPE::SOLID;
int current_pen = penNumber;
for( HPGL_ITEM const& item : m_items )
{
if( item.loc_start != loc || pen_up )
{
if( !pen_up )
{
fputs( "PU;", m_outputFile );
pen_up = true;
}
fprintf( m_outputFile, "PA %.0f,%.0f;", item.loc_start.x, item.loc_start.y );
}
if( item.dashType != current_dash )
{
current_dash = item.dashType;
fputs( lineTypeCommand( item.dashType ), m_outputFile );
}
if( item.pen != current_pen )
{
if( !pen_up )
{
fputs( "PU;", m_outputFile );
pen_up = true;
}
fprintf( m_outputFile, "SP%d;", item.pen );
current_pen = item.pen;
}
if( pen_up && !item.lift_before )
{
fputs( "PD;", m_outputFile );
pen_up = false;
}
else if( !pen_up && item.lift_before )
{
fputs( "PU;", m_outputFile );
pen_up = true;
}
fputs( static_cast<const char*>( item.content.utf8_str() ), m_outputFile );
if( !item.pen_returns )
{
// Assume commands drop the pen
pen_up = false;
}
if( item.lift_after )
{
fputs( "PU;", m_outputFile );
pen_up = true;
}
else
{
loc = item.loc_end;
}
fputs( "\n", m_outputFile );
}
}
fputs( "PU;PA;SP0;\n", m_outputFile );
fclose( m_outputFile );
m_outputFile = NULL;
return true;
}
void HPGL_PLOTTER::SetPenDiameter( double diameter )
{
penDiameter = diameter;
}
void HPGL_PLOTTER::Rect( const wxPoint& p1, const wxPoint& p2, FILL_TYPE fill, int width )
{
wxASSERT( m_outputFile );
DPOINT p1dev = userToDeviceCoordinates( p1 );
DPOINT p2dev = userToDeviceCoordinates( p2 );
MoveTo( p1 );
if( fill == FILL_TYPE::FILLED_SHAPE )
{
startOrAppendItem( p1dev, wxString::Format( "RA %.0f,%.0f;", p2dev.x, p2dev.y ) );
}
startOrAppendItem( p1dev, wxString::Format( "EA %.0f,%.0f;", p2dev.x, p2dev.y ) );
m_current_item->loc_end = m_current_item->loc_start;
m_current_item->bbox.Merge( p2dev );
PenFinish();
}
// HPGL circle
void HPGL_PLOTTER::Circle( const wxPoint& centre, int diameter, FILL_TYPE fill,
int width )
{
wxASSERT( m_outputFile );
double radius = userToDeviceSize( diameter / 2 );
DPOINT center_dev = userToDeviceCoordinates( centre );
SetCurrentLineWidth( width );
double const circumf = 2.0 * M_PI * radius;
double const target_chord_length = arcTargetChordLength;
double chord_degrees = 360.0 * target_chord_length / circumf;
if( chord_degrees < arcMinChordDegrees )
{
chord_degrees = arcMinChordDegrees;
}
else if( chord_degrees > 45 )
{
chord_degrees = 45;
}
if( fill == FILL_TYPE::FILLED_SHAPE )
{
// Draw the filled area
MoveTo( centre );
startOrAppendItem( center_dev, wxString::Format( "PM 0;CI %g,%g;%s", radius, chord_degrees,
hpgl_end_polygon_cmd ) );
m_current_item->lift_before = true;
m_current_item->pen_returns = true;
m_current_item->bbox.Merge(
BOX2D( center_dev - radius, VECTOR2D( 2 * radius, 2 * radius ) ) );
PenFinish();
}
if( radius > 0 )
{
MoveTo( centre );
startOrAppendItem( center_dev, wxString::Format( "CI %g,%g;", radius, chord_degrees ) );
m_current_item->lift_before = true;
m_current_item->pen_returns = true;
m_current_item->bbox.Merge(
BOX2D( center_dev - radius, VECTOR2D( 2 * radius, 2 * radius ) ) );
PenFinish();
}
}
/**
* HPGL polygon:
*/
void HPGL_PLOTTER::PlotPoly( const std::vector<wxPoint>& aCornerList,
FILL_TYPE aFill, int aWidth, void * aData )
{
if( aCornerList.size() <= 1 )
return;
// Width less than zero is occasionally used to create background-only
// polygons. Don't set that as the plotter line width, that'll cause
// trouble. Also, later, skip plotting the outline if this is the case.
if( aWidth > 0 )
{
SetCurrentLineWidth( aWidth );
}
MoveTo( aCornerList[0] );
startItem( userToDeviceCoordinates( aCornerList[0] ) );
if( aFill == FILL_TYPE::FILLED_SHAPE )
{
// Draw the filled area
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH );
m_current_item->content << wxString( "PM 0;\n" ); // Start polygon
for( unsigned ii = 1; ii < aCornerList.size(); ++ii )
LineTo( aCornerList[ii] );
int ii = aCornerList.size() - 1;
if( aCornerList[ii] != aCornerList[0] )
LineTo( aCornerList[0] );
m_current_item->content << hpgl_end_polygon_cmd; // Close, fill polygon and draw outlines
m_current_item->pen_returns = true;
}
else if( aWidth > 0 )
{
// Plot only the polygon outline.
for( unsigned ii = 1; ii < aCornerList.size(); ii++ )
LineTo( aCornerList[ii] );
// Always close polygon if filled.
if( aFill != FILL_TYPE::NO_FILL )
{
int ii = aCornerList.size() - 1;
if( aCornerList[ii] != aCornerList[0] )
LineTo( aCornerList[0] );
}
}
PenFinish();
}
void HPGL_PLOTTER::PenTo( const wxPoint& pos, char plume )
{
wxASSERT( m_outputFile );
if( plume == 'Z' )
{
m_penState = 'Z';
flushItem();
return;
}
DPOINT pos_dev = userToDeviceCoordinates( pos );
DPOINT lastpos_dev = userToDeviceCoordinates( m_penLastpos );
if( plume == 'U' )
{
m_penState = 'U';
flushItem();
}
else if( plume == 'D' )
{
m_penState = 'D';
startOrAppendItem(
lastpos_dev,
wxString::Format(
"PA %.0f,%.0f;",
pos_dev.x,
pos_dev.y
)
);
m_current_item->loc_end = pos_dev;
m_current_item->bbox.Merge( pos_dev );
}
m_penLastpos = pos;
}
/**
* HPGL supports dashed lines
*/
void HPGL_PLOTTER::SetDash( PLOT_DASH_TYPE dashed )
{
dashType = dashed;
flushItem();
}
void HPGL_PLOTTER::ThickSegment( const wxPoint& start, const wxPoint& end,
int width, OUTLINE_MODE tracemode, void* aData )
{
wxASSERT( m_outputFile );
// Suppress overlap if pen is too big
if( penDiameter >= width )
{
MoveTo( start );
FinishTo( end );
}
else
{
segmentAsOval( start, end, width, tracemode );
}
}
/* Plot an arc:
* Center = center coord
* Stangl, endAngle = angle of beginning and end
* Radius = radius of the arc
* Command
* PU PY x, y; PD start_arc_X AA, start_arc_Y, angle, NbSegm; PU;
* Or PU PY x, y; PD start_arc_X AA, start_arc_Y, angle, PU;
*/
void HPGL_PLOTTER::Arc( const wxPoint& centre, double StAngle, double EndAngle, int radius,
FILL_TYPE fill, int width )
{
wxASSERT( m_outputFile );
double angle;
if( radius <= 0 )
return;
double const radius_dev = userToDeviceSize( radius );
double const circumf_dev = 2.0 * M_PI * radius_dev;
double const target_chord_length = arcTargetChordLength;
double chord_degrees = 360.0 * target_chord_length / circumf_dev;
if( chord_degrees < arcMinChordDegrees )
{
chord_degrees = arcMinChordDegrees;
}
else if( chord_degrees > 45 )
{
chord_degrees = 45;
}
DPOINT centre_dev = userToDeviceCoordinates( centre );
if( m_plotMirror )
angle = StAngle - EndAngle;
else
angle = EndAngle - StAngle;
NORMALIZE_ANGLE_180( angle );
angle /= 10;
// Calculate arc start point:
wxPoint cmap;
cmap.x = centre.x + KiROUND( cosdecideg( radius, StAngle ) );
cmap.y = centre.y - KiROUND( sindecideg( radius, StAngle ) );
DPOINT cmap_dev = userToDeviceCoordinates( cmap );
startOrAppendItem( cmap_dev, wxString::Format( "AA %.0f,%.0f,%.0f,%g", centre_dev.x,
centre_dev.y, angle, chord_degrees ) );
// TODO We could compute the final position and full bounding box instead...
m_current_item->bbox.Merge(
BOX2D( centre_dev - radius_dev, VECTOR2D( radius_dev * 2, radius_dev * 2 ) ) );
m_current_item->lift_after = true;
flushItem();
}
/* Plot oval pad.
*/
void HPGL_PLOTTER::FlashPadOval( const wxPoint& pos, const wxSize& aSize, double orient,
OUTLINE_MODE trace_mode, void* aData )
{
wxASSERT( m_outputFile );
int deltaxy, cx, cy;
wxSize size( aSize );
/* The pad will be drawn as an oblong shape with size.y > size.x
* (Oval vertical orientation 0)
*/
if( size.x > size.y )
{
std::swap( size.x, size.y );
orient = AddAngles( orient, 900 );
}
deltaxy = size.y - size.x; // distance between centers of the oval
if( trace_mode == FILLED )
{
FlashPadRect( pos, wxSize( size.x, deltaxy + KiROUND( penDiameter ) ),
orient, trace_mode, aData );
cx = 0; cy = deltaxy / 2;
RotatePoint( &cx, &cy, orient );
FlashPadCircle( wxPoint( cx + pos.x, cy + pos.y ), size.x, trace_mode, aData );
cx = 0; cy = -deltaxy / 2;
RotatePoint( &cx, &cy, orient );
FlashPadCircle( wxPoint( cx + pos.x, cy + pos.y ), size.x, trace_mode, aData );
}
else // Plot in outline mode.
{
sketchOval( pos, size, orient, KiROUND( penDiameter ) );
}
}
/* Plot round pad or via.
*/
void HPGL_PLOTTER::FlashPadCircle( const wxPoint& pos, int diametre,
OUTLINE_MODE trace_mode, void* aData )
{
wxASSERT( m_outputFile );
DPOINT pos_dev = userToDeviceCoordinates( pos );
int radius = diametre / 2;
if( trace_mode == FILLED )
{
// if filled mode, the pen diameter is removed from diameter
// to keep the pad size
radius -= KiROUND( penDiameter ) / 2;
}
if( radius < 0 )
radius = 0;
double rsize = userToDeviceSize( radius );
if( trace_mode == FILLED ) // Plot in filled mode.
{
// A filled polygon uses always the current point to start the polygon.
// Gives a correct current starting point for the circle
MoveTo( wxPoint( pos.x+radius, pos.y ) );
// Plot filled area and its outline
startOrAppendItem( userToDeviceCoordinates( wxPoint( pos.x + radius, pos.y ) ),
wxString::Format( "PM 0; PA %.0f,%.0f;CI %.0f;%s", pos_dev.x, pos_dev.y, rsize,
hpgl_end_polygon_cmd ) );
m_current_item->lift_before = true;
m_current_item->pen_returns = true;
}
else
{
// Draw outline only:
startOrAppendItem( pos_dev, wxString::Format( "CI %.0f;", rsize ) );
m_current_item->lift_before = true;
m_current_item->pen_returns = true;
}
PenFinish();
}
void HPGL_PLOTTER::FlashPadRect( const wxPoint& pos, const wxSize& padsize,
double orient, OUTLINE_MODE trace_mode, void* aData )
{
// Build rect polygon:
std::vector<wxPoint> corners;
int dx = padsize.x / 2;
int dy = padsize.y / 2;
if( trace_mode == FILLED )
{
// in filled mode, the pen diameter is removed from size
// to compensate the extra size due to this pen size
dx -= KiROUND( penDiameter ) / 2;
dx = std::max( dx, 0);
dy -= KiROUND( penDiameter ) / 2;
dy = std::max( dy, 0);
}
corners.emplace_back( - dx, - dy );
corners.emplace_back( - dx, + dy );
corners.emplace_back( + dx, + dy );
corners.emplace_back( + dx, - dy );
// Close polygon
corners.emplace_back( - dx, - dy );
for( unsigned ii = 0; ii < corners.size(); ii++ )
{
RotatePoint( &corners[ii], orient );
corners[ii] += pos;
}
PlotPoly( corners, trace_mode == FILLED ? FILL_TYPE::FILLED_SHAPE : FILL_TYPE::NO_FILL );
}
void HPGL_PLOTTER::FlashPadRoundRect( const wxPoint& aPadPos, const wxSize& aSize,
int aCornerRadius, double aOrient,
OUTLINE_MODE aTraceMode, void* aData )
{
SHAPE_POLY_SET outline;
wxSize size = aSize;
if( aTraceMode == FILLED )
{
// in filled mode, the pen diameter is removed from size
// to keep the pad size
size.x -= KiROUND( penDiameter ) / 2;
size.x = std::max( size.x, 0);
size.y -= KiROUND( penDiameter ) / 2;
size.y = std::max( size.y, 0);
// keep aCornerRadius to a value < min size x,y < 2:
aCornerRadius = std::min( aCornerRadius, std::min( size.x, size.y ) /2 );
}
TransformRoundChamferedRectToPolygon( outline, aPadPos, size, aOrient, aCornerRadius,
0.0, 0, GetPlotterArcHighDef(), ERROR_INSIDE );
// TransformRoundRectToPolygon creates only one convex polygon
std::vector<wxPoint> cornerList;
SHAPE_LINE_CHAIN& poly = outline.Outline( 0 );
cornerList.reserve( poly.PointCount() );
for( int ii = 0; ii < poly.PointCount(); ++ii )
cornerList.emplace_back( poly.CPoint( ii ).x, poly.CPoint( ii ).y );
if( cornerList.back() != cornerList.front() )
cornerList.push_back( cornerList.front() );
PlotPoly( cornerList, aTraceMode == FILLED ? FILL_TYPE::FILLED_SHAPE : FILL_TYPE::NO_FILL );
}
void HPGL_PLOTTER::FlashPadCustom( const wxPoint& aPadPos, const wxSize& aSize,
double aOrient, SHAPE_POLY_SET* aPolygons,
OUTLINE_MODE aTraceMode, void* aData )
{
std::vector< wxPoint > cornerList;
for( int cnt = 0; cnt < aPolygons->OutlineCount(); ++cnt )
{
SHAPE_LINE_CHAIN& poly = aPolygons->Outline( cnt );
cornerList.clear();
cornerList.reserve( poly.PointCount() );
for( int ii = 0; ii < poly.PointCount(); ++ii )
cornerList.emplace_back( poly.CPoint( ii ).x, poly.CPoint( ii ).y );
if( cornerList.back() != cornerList.front() )
cornerList.push_back( cornerList.front() );
PlotPoly( cornerList, aTraceMode == FILLED ? FILL_TYPE::FILLED_SHAPE : FILL_TYPE::NO_FILL );
}
}
void HPGL_PLOTTER::FlashPadTrapez( const wxPoint& aPadPos, const wxPoint* aCorners,
double aPadOrient, OUTLINE_MODE aTraceMode, void* aData )
{
std::vector< wxPoint > cornerList;
cornerList.reserve( 5 );
for( int ii = 0; ii < 4; ii++ )
{
wxPoint coord( aCorners[ii] );
RotatePoint( &coord, aPadOrient );
coord += aPadPos;
cornerList.push_back( coord );
}
// Close polygon
cornerList.push_back( cornerList.front() );
PlotPoly( cornerList, aTraceMode == FILLED ? FILL_TYPE::FILLED_SHAPE : FILL_TYPE::NO_FILL );
}
void HPGL_PLOTTER::FlashRegularPolygon( const wxPoint& aShapePos,
int aRadius, int aCornerCount,
double aOrient, OUTLINE_MODE aTraceMode, void* aData )
{
// Do nothing
wxASSERT( 0 );
}
bool HPGL_PLOTTER::startItem( DPOINT location )
{
return startOrAppendItem( location, wxEmptyString );
}
void HPGL_PLOTTER::flushItem()
{
m_current_item = nullptr;
}
bool HPGL_PLOTTER::startOrAppendItem( DPOINT location, wxString const& content )
{
if( m_current_item == nullptr )
{
HPGL_ITEM item;
item.loc_start = location;
item.loc_end = location;
item.bbox = BOX2D( location );
item.pen = penNumber;
item.dashType = dashType;
item.content = content;
m_items.push_back( item );
m_current_item = &m_items.back();
return true;
}
else
{
m_current_item->content << content;
return false;
}
}
void HPGL_PLOTTER::sortItems( std::list<HPGL_ITEM>& items )
{
if( items.size() < 2 )
{
return;
}
std::list<HPGL_ITEM> target;
// Plot items are sorted to improve print time on mechanical plotters. This
// means
// 1) Avoid excess pen-switching - once a pen is selected, keep printing
// with it until no more items using that pen remain.
// 2) Within the items for one pen, avoid bouncing back and forth around
// the page; items should be sequenced with nearby items.
//
// This is essentially a variant of the Travelling Salesman Problem where
// the cities are themselves edges that must be traversed. This is of course
// a famously NP-Hard problem and this particular variant has a monstrous
// number of "cities". For now, we're using a naive nearest-neighbor search,
// which is less than optimal but (usually!) better than nothing, very
// simple to implement, and fast enough.
//
// Items are moved one at a time from `items` into `target`, searching
// each time for the first one matching the above criteria. Then, all of
// `target` is moved back into `items`.
// Get the first one started
HPGL_ITEM last_item = items.front();
items.pop_front();
target.emplace_back( last_item );
while( !items.empty() )
{
auto best_it = items.begin();
double best_dist = dpoint_dist( last_item.loc_end, best_it->loc_start );
for( auto search_it = best_it; search_it != items.end(); search_it++ )
{
// Immediately forget an item as "best" if another one is a better
// pen match
if( best_it->pen != last_item.pen && search_it->pen == last_item.pen )
{
best_it = search_it;
continue;
}
double const dist = dpoint_dist( last_item.loc_end, search_it->loc_start );
if( dist < best_dist )
{
best_it = search_it;
best_dist = dist;
continue;
}
}
target.emplace_back( *best_it );
last_item = *best_it;
items.erase( best_it );
}
items.splice( items.begin(), target );
}
const char* HPGL_PLOTTER::lineTypeCommand( PLOT_DASH_TYPE linetype )
{
switch( linetype )
{
case PLOT_DASH_TYPE::DASH:
return "LT -2 4 1;";
break;
case PLOT_DASH_TYPE::DOT:
return "LT -1 2 1;";
break;
case PLOT_DASH_TYPE::DASHDOT:
return "LT -4 6 1;";
break;
default:
return "LT;";
break;
}
}
static double dpoint_dist( DPOINT a, DPOINT b )
{
DPOINT diff = a - b;
return sqrt( diff.x * diff.x + diff.y * diff.y );
}