Seth Hillbrand 0b2d4d4879 Revise Copyright statement to align with TLF
Recommendation is to avoid using the year nomenclature as this
information is already encoded in the git repo.  Avoids needing to
repeatly update.

Also updates AUTHORS.txt from current repo with contributor names
2025-01-01 14:12:04 -08:00

2017 lines
60 KiB
C++

//TITLE
//
// R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING
//
//DESCRIPTION
//
// A C++ templated version of the RTree algorithm.
// For more information please read the comments in RTree.h
//
//AUTHORS
//
// * 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely
// * 1994 ANCI C ported from original test code by Melinda Green - melinda@superliminal.com
// * 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook
// * 2004 Templated C++ port by Greg Douglas
// * 2013 CERN (www.cern.ch)
// * 2020 KiCad Developers - Add std::iterator support for searching
// * 2020 KiCad Developers - Add container nearest neighbor based on Hjaltason & Samet
// * 2022 KiCad Developers - Slight optimizations in RectSphericalVolume
//
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
* Copyright (C) 2013 CERN
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef RTREE_H
#define RTREE_H
// NOTE This file compiles under MSVC 6 SP5 and MSVC .Net 2003 it may not work on other compilers without modification.
// NOTE These next few lines may be win32 specific, you may need to modify them to compile on other platform
#include <cassert>
#include <climits>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <array>
#include <functional>
#include <iterator>
#include <limits>
#include <queue>
#include <vector>
#ifdef DEBUG
#define ASSERT assert // RTree uses ASSERT( condition )
#else
#define ASSERT( _x )
#endif
//
// RTree.h
//
#define RTREE_TEMPLATE template <class DATATYPE, class ELEMTYPE, int NUMDIMS, \
class ELEMTYPEREAL, int TMAXNODES, int TMINNODES>
#define RTREE_SEARCH_TEMPLATE template <class DATATYPE, class ELEMTYPE, int NUMDIMS, \
class ELEMTYPEREAL, int TMAXNODES, int TMINNODES, class VISITOR>
#define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, \
TMINNODES>
#define RTREE_SEARCH_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, \
TMINNODES, VISITOR>
#define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one.
#define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems
// Fwd decl
class RTFileStream; // File I/O helper class, look below for implementation and notes.
/// \class RTree
/// Implementation of RTree, a multidimensional bounding rectangle tree.
/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
///
/// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com)
///
/// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof<void*> and simple type
/// ELEMTYPE Type of element such as int or float
/// NUMDIMS Number of dimensions such as 2 or 3
/// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs
///
/// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle.
/// This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency.
/// Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory
/// array similar to MFC CArray or STL Vector for returning search query result.
///
template <class DATATYPE, class ELEMTYPE, int NUMDIMS,
class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2>
class RTree
{
protected:
struct Node; // Fwd decl. Used by other internal structs and iterator
public:
/// Minimal bounding rectangle (n-dimensional)
struct Rect
{
ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box
ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box
};
// These constant must be declared after Branch and before Node struct
// Stuck up here for MSVC 6 compiler. NSVC .NET 2003 is much happier.
enum {
MAXNODES = TMAXNODES, ///< Max elements in node
MINNODES = TMINNODES ///< Min elements in node
};
struct Statistics {
int maxDepth;
int avgDepth;
int maxNodeLoad;
int avgNodeLoad;
int totalItems;
};
public:
RTree();
virtual ~RTree();
/// Insert entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
void Insert( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId );
/// Remove entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
/// \return 1 if record not found, 0 if success.
bool Remove( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId );
/// Find all within search rectangle
/// \param a_min Min of search bounding rect
/// \param a_max Max of search bounding rect
/// \param a_callback Callback function to return result. Callback should return 'true' to continue searching
/// \return Returns the number of entries found
int Search( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
std::function<bool (const DATATYPE&)> a_callback ) const;
/// Find all within search rectangle
/// \param a_min Min of search bounding rect
/// \param a_max Max of search bounding rect
/// \param a_callback Callback function to return result. Callback should return 'true' to continue searching
/// \param aFinished This is set to true if the search completed and false if it was interupted
/// \return Returns the number of entries found
int Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
std::function<bool( const DATATYPE& )> a_callback, bool& aFinished ) const;
template <class VISITOR>
int Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], VISITOR& a_visitor ) const
{
#ifdef _DEBUG
for( int index = 0; index < NUMDIMS; ++index )
{
ASSERT( a_min[index] <= a_max[index] );
}
#endif // _DEBUG
Rect rect;
for( int axis = 0; axis < NUMDIMS; ++axis )
{
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
int cnt = 0;
Search( m_root, &rect, a_visitor, cnt );
return cnt;
}
/// Calculate Statistics
Statistics CalcStats();
/// Remove all entries from tree
void RemoveAll();
/// Count the data elements in this container. This is slow as no internal counter is maintained.
int Count() const;
/// Load tree contents from file
bool Load( const char* a_fileName );
/// Load tree contents from stream
bool Load( RTFileStream& a_stream ) const;
/// Save tree contents to file
bool Save( const char* a_fileName );
/// Save tree contents to stream
bool Save( RTFileStream& a_stream ) const;
/**
* Gets an ordered vector of the nearest data elements to a specified point
* @param aPoint coordinate to measure against
* @param aTerminate Callback routine to check when we have gathered sufficient elements
* @param aFilter Callback routine to remove specific elements from the query results
* @param aSquaredDist Callback routine to measure the distance from the point to the data element
* @return vector of matching elements and their distance to the point
*/
std::vector<std::pair<ELEMTYPE, DATATYPE>> NearestNeighbors(
const ELEMTYPE aPoint[NUMDIMS],
std::function<bool( const std::size_t aNumResults, const ELEMTYPE aMinDist )> aTerminate,
std::function<bool( const DATATYPE aElement )> aFilter,
std::function<ELEMTYPE( const ELEMTYPE a_point[NUMDIMS], const DATATYPE a_data )> aSquaredDist ) const;
public:
/// Iterator is not remove safe.
class Iterator
{
private:
enum
{
MAX_STACK = 32
}; // Max stack size. Allows almost n^32 where n is number of branches in node
struct StackElement
{
Node* m_node;
int m_branchIndex;
};
public:
typedef std::forward_iterator_tag iterator_category;
typedef DATATYPE value_type;
typedef ptrdiff_t difference_type;
typedef DATATYPE* pointer;
typedef DATATYPE& reference;
public:
Iterator() : m_stack( {} ), m_tos( 0 )
{
for( int i = 0; i < NUMDIMS; ++i )
{
m_rect.m_min[i] = std::numeric_limits<ELEMTYPE>::min();
m_rect.m_max[i] = std::numeric_limits<ELEMTYPE>::max();
}
}
Iterator( const Rect& aRect ) : m_stack( {} ), m_tos( 0 ), m_rect( aRect )
{
}
~Iterator()
{
}
/// Is iterator pointing to valid data
constexpr bool IsNotNull() const
{
return m_tos > 0;
}
/// Access the current data element. Caller must be sure iterator is not NULL first.
DATATYPE& operator*()
{
ASSERT( IsNotNull() );
StackElement& curTos = m_stack[m_tos - 1];
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
}
/// Access the current data element. Caller must be sure iterator is not NULL first.
const DATATYPE& operator*() const
{
ASSERT( IsNotNull() );
StackElement& curTos = m_stack[m_tos - 1];
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
}
DATATYPE* operator->()
{
ASSERT( IsNotNull() );
StackElement& curTos = m_stack[m_tos - 1];
return &( curTos.m_node->m_branch[curTos.m_branchIndex].m_data );
}
/// Prefix ++ operator
Iterator& operator++()
{
FindNextData();
return *this;
}
/// Postfix ++ operator
Iterator operator++( int )
{
Iterator retval = *this;
FindNextData();
return retval;
}
bool operator==( const Iterator& rhs ) const
{
return ( ( m_tos <= 0 && rhs.m_tos <= 0 )
|| ( m_tos == rhs.m_tos && m_stack[m_tos].m_node == rhs.m_stack[m_tos].m_node
&& m_stack[m_tos].m_branchIndex
== rhs.m_stack[m_tos].m_branchIndex ) );
}
bool operator!=( const Iterator& rhs ) const
{
return ( ( m_tos > 0 || rhs.m_tos > 0 )
&& ( m_tos != rhs.m_tos || m_stack[m_tos].m_node != rhs.m_stack[m_tos].m_node
|| m_stack[m_tos].m_branchIndex
!= rhs.m_stack[m_tos].m_branchIndex ) );
}
private:
/// Find the next data element in the tree (For internal use only)
void FindNextData()
{
while( m_tos > 0 )
{
StackElement curTos = Pop();
int nextBranch = curTos.m_branchIndex + 1;
if( curTos.m_node->IsLeaf() )
{
// Keep walking through siblings until we find an overlapping leaf
for( int i = nextBranch; i < curTos.m_node->m_count; i++ )
{
if( RTree::Overlap( &m_rect, &curTos.m_node->m_branch[i].m_rect ) )
{
Push( curTos.m_node, i );
return;
}
}
// No more data, so it will fall back to previous level
}
else
{
// Look for an overlapping sibling that we can use as the fall-back node
// when we've iterated down the current branch
for( int i = nextBranch; i < curTos.m_node->m_count; i++ )
{
if( RTree::Overlap( &m_rect, &curTos.m_node->m_branch[i].m_rect ) )
{
Push( curTos.m_node, i );
break;
}
}
Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child;
// Since cur node is not a leaf, push first of next level,
// zero-th branch to get deeper into the tree
Push( nextLevelnode, 0 );
// If the branch is a leaf, and it overlaps, then break with the current data
// Otherwise, we allow it to seed our next iteration as it may have siblings that
// do overlap
if( nextLevelnode->IsLeaf()
&& RTree::Overlap( &m_rect, &nextLevelnode->m_branch[0].m_rect ) )
return;
}
}
}
/// Push node and branch onto iteration stack (For internal use only)
void Push( Node* a_node, int a_branchIndex )
{
m_stack[m_tos].m_node = a_node;
m_stack[m_tos].m_branchIndex = a_branchIndex;
++m_tos;
ASSERT( m_tos <= MAX_STACK );
}
/// Pop element off iteration stack (For internal use only)
StackElement& Pop()
{
ASSERT( m_tos > 0 );
--m_tos;
return m_stack[m_tos];
}
std::array<StackElement, MAX_STACK> m_stack; ///< Stack for iteration
int m_tos; ///< Top Of Stack index
Rect m_rect; ///< Search rectangle
friend class RTree;
// Allow hiding of non-public functions while allowing manipulation by logical owner
};
using iterator = Iterator;
using const_iterator = const Iterator;
iterator begin( const Rect& aRect ) const
{
iterator retval( aRect );
if( !m_root->m_count )
return retval;
retval.Push( m_root, 0 );
// If the first leaf matches, return the root pointer, otherwise,
// increment to the first match or empty if none.
if( m_root->IsLeaf() && Overlap( &aRect, &m_root->m_branch[0].m_rect ) )
return retval;
++retval;
return retval;
}
iterator begin() const
{
Rect full_rect;
std::fill_n( full_rect.m_min, NUMDIMS, INT_MIN );
std::fill_n( full_rect.m_max, NUMDIMS, INT_MAX );
return begin( full_rect );
}
iterator end() const
{
iterator retval;
return retval;
}
iterator end( const Rect& aRect ) const
{
return end();
}
protected:
/// May be data or may be another subtree
/// The parents level determines this.
/// If the parents level is 0, then this is data
struct Branch
{
Rect m_rect; ///< Bounds
union
{
Node* m_child; ///< Child node
DATATYPE m_data; ///< Data Id or Ptr
};
};
/// Node for each branch level
struct Node
{
constexpr bool IsInternalNode() const { return m_level > 0; } // Not a leaf, but a internal node
constexpr bool IsLeaf() const { return m_level == 0; } // A leaf, contains data
int m_count; ///< Count
int m_level; ///< Leaf is zero, others positive
Branch m_branch[MAXNODES]; ///< Branch
};
/// A link list of nodes for reinsertion after a delete operation
struct ListNode
{
ListNode* m_next; ///< Next in list
Node* m_node; ///< Node
};
/// Variables for finding a split partition
struct PartitionVars
{
int m_partition[MAXNODES + 1];
int m_total;
int m_minFill;
bool m_taken[MAXNODES + 1];
int m_count[2];
Rect m_cover[2];
ELEMTYPEREAL m_area[2];
Branch m_branchBuf[MAXNODES + 1];
int m_branchCount;
Rect m_coverSplit;
ELEMTYPEREAL m_coverSplitArea;
};
/// Data structure used for Nearest Neighbor search implementation
struct NNNode
{
Branch m_branch;
ELEMTYPE minDist;
bool isLeaf;
inline bool operator<(const NNNode &other) const
{
/// This is reversed on purpose to use std::priority_queue
return other.minDist < minDist;
}
};
Node* AllocNode() const;
void FreeNode( Node* a_node ) const;
void InitNode( Node* a_node ) const;
void InitRect( Rect* a_rect ) const;
bool InsertRectRec( const Rect* a_rect,
const DATATYPE& a_id,
Node* a_node,
Node** a_newNode,
int a_level ) const;
bool InsertRect( const Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level ) const;
Rect NodeCover( Node* a_node ) const;
bool AddBranch( const Branch* a_branch, Node* a_node, Node** a_newNode ) const;
void DisconnectBranch( Node* a_node, int a_index ) const;
int PickBranch( const Rect* a_rect, Node* a_node ) const;
Rect CombineRect( const Rect* a_rectA, const Rect* a_rectB ) const;
void SplitNode( Node* a_node, const Branch* a_branch, Node** a_newNode ) const;
ELEMTYPEREAL RectSphericalVolume( const Rect* a_rect ) const;
ELEMTYPEREAL RectVolume( const Rect* a_rect ) const;
ELEMTYPEREAL CalcRectVolume( const Rect* a_rect ) const;
void GetBranches( Node* a_node, const Branch* a_branch, PartitionVars* a_parVars ) const;
void ChoosePartition( PartitionVars* a_parVars, int a_minFill ) const;
void LoadNodes( Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars ) const;
void InitParVars( PartitionVars* a_parVars, int a_maxRects, int a_minFill ) const;
void PickSeeds( PartitionVars* a_parVars ) const;
void Classify( int a_index, int a_group, PartitionVars* a_parVars ) const;
bool RemoveRect( const Rect* a_rect, const DATATYPE& a_id, Node** a_root ) const;
bool RemoveRectRec( const Rect* a_rect,
const DATATYPE& a_id,
Node* a_node,
ListNode** a_listNode ) const;
ListNode* AllocListNode() const;
void FreeListNode( ListNode* a_listNode ) const;
static bool Overlap( const Rect* a_rectA, const Rect* a_rectB );
void ReInsert( Node* a_node, ListNode** a_listNode ) const;
ELEMTYPE MinDist( const ELEMTYPE a_point[NUMDIMS], const Rect& a_rect ) const;
bool Search( const Node* a_node, const Rect* a_rect, int& a_foundCount,
std::function<bool (const DATATYPE&)> a_callback ) const;
template <class VISITOR>
bool Search( const Node* a_node, const Rect* a_rect, VISITOR& a_visitor, int& a_foundCount ) const
{
ASSERT( a_node );
ASSERT( a_node->m_level >= 0 );
ASSERT( a_rect );
if( a_node->IsInternalNode() ) // This is an internal node in the tree
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
{
if( !Search( a_node->m_branch[index].m_child, a_rect, a_visitor, a_foundCount ) )
{
return false; // Don't continue searching
}
}
}
}
else // This is a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
{
const DATATYPE& id = a_node->m_branch[index].m_data;
if( !a_visitor( id ) )
return false;
a_foundCount++;
}
}
}
return true; // Continue searching
}
void RemoveAllRec( Node* a_node ) const;
void Reset() const;
void CountRec( const Node* a_node, int& a_count ) const;
bool SaveRec( const Node* a_node, RTFileStream& a_stream ) const;
bool LoadRec( const Node* a_node, RTFileStream& a_stream ) const;
Node* m_root; ///< Root of tree
ELEMTYPEREAL m_unitSphereVolume; ///< Unit sphere constant for required number of dimensions
};
// Because there is not stream support, this is a quick and dirty file I/O helper.
// Users will likely replace its usage with a Stream implementation from their favorite API.
class RTFileStream
{
FILE* m_file;
public:
RTFileStream()
{
m_file = NULL;
}
~RTFileStream()
{
Close();
}
bool OpenRead( const char* a_fileName )
{
m_file = std::fopen( a_fileName, "rb" );
if( !m_file )
{
return false;
}
return true;
}
bool OpenWrite( const char* a_fileName )
{
m_file = std::fopen( a_fileName, "wb" );
if( !m_file )
{
return false;
}
return true;
}
void Close()
{
if( m_file )
{
std::fclose( m_file );
m_file = NULL;
}
}
template <typename TYPE>
size_t Write( const TYPE& a_value )
{
ASSERT( m_file );
return std::fwrite( (void*) &a_value, sizeof(a_value), 1, m_file );
}
template <typename TYPE>
size_t WriteArray( const TYPE* a_array, int a_count )
{
ASSERT( m_file );
return std::fwrite( (void*) a_array, sizeof(TYPE) * a_count, 1, m_file );
}
template <typename TYPE>
size_t Read( TYPE& a_value )
{
ASSERT( m_file );
return std::fread( (void*) &a_value, sizeof(a_value), 1, m_file );
}
template <typename TYPE>
size_t ReadArray( TYPE* a_array, int a_count )
{
ASSERT( m_file );
return std::fread( (void*) a_array, sizeof(TYPE) * a_count, 1, m_file );
}
};
RTREE_TEMPLATE RTREE_QUAL::RTree()
{
ASSERT( MAXNODES > MINNODES );
ASSERT( MINNODES > 0 );
// We only support machine word size simple data type eg. integer index or object pointer.
// Since we are storing as union with non data branch
ASSERT( sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int) );
// Precomputed volumes of the unit spheres for the first few dimensions
const float UNIT_SPHERE_VOLUMES[] =
{
0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2
4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5
5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8
3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11
1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14
0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17
0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20
};
m_root = AllocNode();
m_root->m_level = 0;
m_unitSphereVolume = (ELEMTYPEREAL) UNIT_SPHERE_VOLUMES[NUMDIMS];
}
RTREE_TEMPLATE
RTREE_QUAL::~RTree() {
Reset(); // Free, or reset node memory
}
RTREE_TEMPLATE
void RTREE_QUAL::Insert( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId )
{
#ifdef _DEBUG
for( int index = 0; index<NUMDIMS; ++index )
{
ASSERT( a_min[index] <= a_max[index] );
}
#endif // _DEBUG
Rect rect;
for( int axis = 0; axis < NUMDIMS; ++axis )
{
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
InsertRect( &rect, a_dataId, &m_root, 0 );
}
RTREE_TEMPLATE
bool RTREE_QUAL::Remove( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId )
{
#ifdef _DEBUG
for( int index = 0; index<NUMDIMS; ++index )
{
ASSERT( a_min[index] <= a_max[index] );
}
#endif // _DEBUG
Rect rect;
for( int axis = 0; axis < NUMDIMS; ++axis )
{
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
return RemoveRect( &rect, a_dataId, &m_root );
}
RTREE_TEMPLATE
int RTREE_QUAL::Search( const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS],
std::function<bool (const DATATYPE&)> a_callback ) const
{
#ifdef _DEBUG
for( int index = 0; index < NUMDIMS; ++index )
{
ASSERT( a_min[index] <= a_max[index] );
}
#endif // _DEBUG
Rect rect;
for( int axis = 0; axis < NUMDIMS; ++axis )
{
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
int foundCount = 0;
Search( m_root, &rect, foundCount, a_callback );
return foundCount;
}
RTREE_TEMPLATE
int RTREE_QUAL::Search( const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
std::function<bool( const DATATYPE& )> a_callback, bool& aFinished ) const
{
#ifdef _DEBUG
for( int index = 0; index < NUMDIMS; ++index )
{
ASSERT( a_min[index] <= a_max[index] );
}
#endif // _DEBUG
Rect rect;
for( int axis = 0; axis < NUMDIMS; ++axis )
{
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
int foundCount = 0;
aFinished = Search( m_root, &rect, foundCount, a_callback );
return foundCount;
}
RTREE_TEMPLATE
std::vector<std::pair<ELEMTYPE, DATATYPE>> RTREE_QUAL::NearestNeighbors(
const ELEMTYPE a_point[NUMDIMS],
std::function<bool( const std::size_t aNumResults, const ELEMTYPE aMinDist )> aTerminate,
std::function<bool( const DATATYPE aElement )> aFilter,
std::function<ELEMTYPE( const ELEMTYPE a_point[NUMDIMS], const DATATYPE a_data )> aSquaredDist ) const
{
std::vector<std::pair<ELEMTYPE, DATATYPE>> result;
std::priority_queue<NNNode> search_q;
for( int i = 0; i < m_root->m_count; ++i )
{
if( m_root->IsLeaf() )
{
search_q.push( NNNode{ m_root->m_branch[i],
aSquaredDist( a_point, m_root->m_branch[i].m_data ),
m_root->IsLeaf() });
}
else
{
search_q.push( NNNode{ m_root->m_branch[i],
MinDist(a_point, m_root->m_branch[i].m_rect),
m_root->IsLeaf() });
}
}
while( !search_q.empty() )
{
const NNNode curNode = search_q.top();
if( aTerminate( result.size(), curNode.minDist ) )
break;
search_q.pop();
if( curNode.isLeaf )
{
if( aFilter( curNode.m_branch.m_data ) )
result.emplace_back( curNode.minDist, curNode.m_branch.m_data );
}
else
{
Node* node = curNode.m_branch.m_child;
for( int i = 0; i < node->m_count; ++i )
{
NNNode newNode;
newNode.isLeaf = node->IsLeaf();
newNode.m_branch = node->m_branch[i];
if( newNode.isLeaf )
newNode.minDist = aSquaredDist( a_point, newNode.m_branch.m_data );
else
newNode.minDist = this->MinDist( a_point, node->m_branch[i].m_rect );
search_q.push( newNode );
}
}
}
return result;
}
RTREE_TEMPLATE
int RTREE_QUAL::Count() const
{
int count = 0;
CountRec( m_root, count );
return count;
}
RTREE_TEMPLATE
void RTREE_QUAL::CountRec( const Node* a_node, int& a_count ) const
{
if( a_node->IsInternalNode() ) // not a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
CountRec( a_node->m_branch[index].m_child, a_count );
}
}
else // A leaf node
{
a_count += a_node->m_count;
}
}
RTREE_TEMPLATE
bool RTREE_QUAL::Load( const char* a_fileName )
{
RemoveAll(); // Clear existing tree
RTFileStream stream;
if( !stream.OpenRead( a_fileName ) )
{
return false;
}
bool result = Load( stream );
stream.Close();
return result;
}
RTREE_TEMPLATE
bool RTREE_QUAL::Load( RTFileStream& a_stream ) const
{
// Write some kind of header
int _dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24);
int _dataSize = sizeof(DATATYPE);
int _dataNumDims = NUMDIMS;
int _dataElemSize = sizeof(ELEMTYPE);
int _dataElemRealSize = sizeof(ELEMTYPEREAL);
int _dataMaxNodes = TMAXNODES;
int _dataMinNodes = TMINNODES;
int dataFileId = 0;
int dataSize = 0;
int dataNumDims = 0;
int dataElemSize = 0;
int dataElemRealSize = 0;
int dataMaxNodes = 0;
int dataMinNodes = 0;
a_stream.Read( dataFileId );
a_stream.Read( dataSize );
a_stream.Read( dataNumDims );
a_stream.Read( dataElemSize );
a_stream.Read( dataElemRealSize );
a_stream.Read( dataMaxNodes );
a_stream.Read( dataMinNodes );
bool result = false;
// Test if header was valid and compatible
if( (dataFileId == _dataFileId)
&& (dataSize == _dataSize)
&& (dataNumDims == _dataNumDims)
&& (dataElemSize == _dataElemSize)
&& (dataElemRealSize == _dataElemRealSize)
&& (dataMaxNodes == _dataMaxNodes)
&& (dataMinNodes == _dataMinNodes)
)
{
// Recursively load tree
result = LoadRec( m_root, a_stream );
}
return result;
}
RTREE_TEMPLATE
bool RTREE_QUAL::LoadRec( const Node* a_node, RTFileStream& a_stream ) const
{
a_stream.Read( a_node->m_level );
a_stream.Read( a_node->m_count );
if( a_node->IsInternalNode() ) // not a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
const Branch* curBranch = &a_node->m_branch[index];
a_stream.ReadArray( curBranch->m_rect.m_min, NUMDIMS );
a_stream.ReadArray( curBranch->m_rect.m_max, NUMDIMS );
curBranch->m_child = AllocNode();
LoadRec( curBranch->m_child, a_stream );
}
}
else // A leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
const Branch* curBranch = &a_node->m_branch[index];
a_stream.ReadArray( curBranch->m_rect.m_min, NUMDIMS );
a_stream.ReadArray( curBranch->m_rect.m_max, NUMDIMS );
a_stream.Read( curBranch->m_data );
}
}
return true; // Should do more error checking on I/O operations
}
RTREE_TEMPLATE
bool RTREE_QUAL::Save( const char* a_fileName )
{
RTFileStream stream;
if( !stream.OpenWrite( a_fileName ) )
{
return false;
}
bool result = Save( stream );
stream.Close();
return result;
}
RTREE_TEMPLATE
bool RTREE_QUAL::Save( RTFileStream& a_stream ) const
{
// Write some kind of header
int dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24);
int dataSize = sizeof(DATATYPE);
int dataNumDims = NUMDIMS;
int dataElemSize = sizeof(ELEMTYPE);
int dataElemRealSize = sizeof(ELEMTYPEREAL);
int dataMaxNodes = TMAXNODES;
int dataMinNodes = TMINNODES;
a_stream.Write( dataFileId );
a_stream.Write( dataSize );
a_stream.Write( dataNumDims );
a_stream.Write( dataElemSize );
a_stream.Write( dataElemRealSize );
a_stream.Write( dataMaxNodes );
a_stream.Write( dataMinNodes );
// Recursively save tree
bool result = SaveRec( m_root, a_stream );
return result;
}
RTREE_TEMPLATE
bool RTREE_QUAL::SaveRec( const Node* a_node, RTFileStream& a_stream ) const
{
a_stream.Write( a_node->m_level );
a_stream.Write( a_node->m_count );
if( a_node->IsInternalNode() ) // not a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
const Branch* curBranch = &a_node->m_branch[index];
a_stream.WriteArray( curBranch->m_rect.m_min, NUMDIMS );
a_stream.WriteArray( curBranch->m_rect.m_max, NUMDIMS );
SaveRec( curBranch->m_child, a_stream );
}
}
else // A leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
const Branch* curBranch = &a_node->m_branch[index];
a_stream.WriteArray( curBranch->m_rect.m_min, NUMDIMS );
a_stream.WriteArray( curBranch->m_rect.m_max, NUMDIMS );
a_stream.Write( curBranch->m_data );
}
}
return true; // Should do more error checking on I/O operations
}
RTREE_TEMPLATE
void RTREE_QUAL::RemoveAll()
{
// Delete all existing nodes
Reset();
m_root = AllocNode();
m_root->m_level = 0;
}
RTREE_TEMPLATE
void RTREE_QUAL::Reset() const
{
#ifdef RTREE_DONT_USE_MEMPOOLS
// Delete all existing nodes
RemoveAllRec( m_root );
#else // RTREE_DONT_USE_MEMPOOLS
// Just reset memory pools. We are not using complex types
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::RemoveAllRec( Node* a_node ) const
{
ASSERT( a_node );
ASSERT( a_node->m_level >= 0 );
if( a_node->IsInternalNode() ) // This is an internal node in the tree
{
for( int index = 0; index < a_node->m_count; ++index )
{
RemoveAllRec( a_node->m_branch[index].m_child );
}
}
FreeNode( a_node );
}
RTREE_TEMPLATE
typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode() const
{
Node* newNode;
#ifdef RTREE_DONT_USE_MEMPOOLS
newNode = new Node;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
InitNode( newNode );
return newNode;
}
RTREE_TEMPLATE
void RTREE_QUAL::FreeNode( Node* a_node ) const
{
ASSERT( a_node );
#ifdef RTREE_DONT_USE_MEMPOOLS
delete a_node;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
// Allocate space for a node in the list used in DeletRect to
// store Nodes that are too empty.
RTREE_TEMPLATE
typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode() const
{
#ifdef RTREE_DONT_USE_MEMPOOLS
return new ListNode;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::FreeListNode( ListNode* a_listNode ) const
{
#ifdef RTREE_DONT_USE_MEMPOOLS
delete a_listNode;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::InitNode( Node* a_node ) const
{
a_node->m_count = 0;
a_node->m_level = -1;
}
RTREE_TEMPLATE
void RTREE_QUAL::InitRect( Rect* a_rect ) const
{
for( int index = 0; index < NUMDIMS; ++index )
{
a_rect->m_min[index] = (ELEMTYPE) 0;
a_rect->m_max[index] = (ELEMTYPE) 0;
}
}
// Inserts a new data rectangle into the index structure.
// Recursively descends tree, propagates splits back up.
// Returns 0 if node was not split. Old node updated.
// If node was split, returns 1 and sets the pointer pointed to by
// new_node to point to the new node. Old node updated to become one of two.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRectRec( const Rect* a_rect,
const DATATYPE& a_id,
Node* a_node,
Node** a_newNode,
int a_level ) const
{
ASSERT( a_rect && a_node && a_newNode );
ASSERT( a_level >= 0 && a_level <= a_node->m_level );
int index;
Branch branch;
Node* otherNode;
// Still above level for insertion, go down tree recursively
if( a_node->m_level > a_level )
{
index = PickBranch( a_rect, a_node );
if( !InsertRectRec( a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level ) )
{
// Child was not split
a_node->m_branch[index].m_rect =
CombineRect( a_rect, &(a_node->m_branch[index].m_rect) );
return false;
}
else // Child was split
{
a_node->m_branch[index].m_rect = NodeCover( a_node->m_branch[index].m_child );
branch.m_child = otherNode;
branch.m_rect = NodeCover( otherNode );
return AddBranch( &branch, a_node, a_newNode );
}
}
else if( a_node->m_level == a_level ) // Have reached level for insertion. Add rect, split if necessary
{
branch.m_rect = *a_rect;
branch.m_child = (Node*) a_id;
// Child field of leaves contains id of data record
return AddBranch( &branch, a_node, a_newNode );
}
else
{
// Should never occur
ASSERT( 0 );
return false;
}
}
// Insert a data rectangle into an index structure.
// InsertRect provides for splitting the root;
// returns 1 if root was split, 0 if it was not.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
// InsertRect2 does the recursion.
//
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRect( const Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level ) const
{
ASSERT( a_rect && a_root );
ASSERT( a_level >= 0 && a_level <= (*a_root)->m_level );
#ifdef _DEBUG
for( int index = 0; index < NUMDIMS; ++index )
{
ASSERT( a_rect->m_min[index] <= a_rect->m_max[index] );
}
#endif // _DEBUG
Node* newRoot;
Node* newNode;
Branch branch;
if( InsertRectRec( a_rect, a_id, *a_root, &newNode, a_level ) ) // Root split
{
newRoot = AllocNode(); // Grow tree taller and new root
newRoot->m_level = (*a_root)->m_level + 1;
branch.m_rect = NodeCover( *a_root );
branch.m_child = *a_root;
AddBranch( &branch, newRoot, NULL );
branch.m_rect = NodeCover( newNode );
branch.m_child = newNode;
AddBranch( &branch, newRoot, NULL );
*a_root = newRoot;
return true;
}
return false;
}
// Find the smallest rectangle that includes all rectangles in branches of a node.
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover( Node* a_node ) const
{
ASSERT( a_node );
bool firstTime = true;
Rect rect;
InitRect( &rect );
for( int index = 0; index < a_node->m_count; ++index )
{
if( firstTime )
{
rect = a_node->m_branch[index].m_rect;
firstTime = false;
}
else
{
rect = CombineRect( &rect, &(a_node->m_branch[index].m_rect) );
}
}
return rect;
}
// Add a branch to a node. Split the node if necessary.
// Returns 0 if node not split. Old node updated.
// Returns 1 if node split, sets *new_node to address of new node.
// Old node updated, becomes one of two.
RTREE_TEMPLATE
bool RTREE_QUAL::AddBranch( const Branch* a_branch, Node* a_node, Node** a_newNode ) const
{
ASSERT( a_branch );
ASSERT( a_node );
if( a_node->m_count < MAXNODES ) // Split won't be necessary
{
a_node->m_branch[a_node->m_count] = *a_branch;
++a_node->m_count;
return false;
}
else
{
ASSERT( a_newNode );
SplitNode( a_node, a_branch, a_newNode );
return true;
}
}
// Disconnect a dependent node.
// Caller must return (or stop using iteration index) after this as count has changed
RTREE_TEMPLATE
void RTREE_QUAL::DisconnectBranch( Node* a_node, int a_index ) const
{
ASSERT( a_node && (a_index >= 0) && (a_index < MAXNODES) );
ASSERT( a_node->m_count > 0 );
// Remove element by swapping with the last element to prevent gaps in array
a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];
--a_node->m_count;
}
// Pick a branch. Pick the one that will need the smallest increase
// in area to accomodate the new rectangle. This will result in the
// least total area for the covering rectangles in the current node.
// In case of a tie, pick the one which was smaller before, to get
// the best resolution when searching.
RTREE_TEMPLATE
int RTREE_QUAL::PickBranch( const Rect* a_rect, Node* a_node ) const
{
ASSERT( a_rect && a_node );
bool firstTime = true;
ELEMTYPEREAL increase;
ELEMTYPEREAL bestIncr = (ELEMTYPEREAL) -1;
ELEMTYPEREAL area;
ELEMTYPEREAL bestArea = 0;
int best = 0;
Rect tempRect;
for( int index = 0; index < a_node->m_count; ++index )
{
Rect* curRect = &a_node->m_branch[index].m_rect;
area = CalcRectVolume( curRect );
tempRect = CombineRect( a_rect, curRect );
increase = CalcRectVolume( &tempRect ) - area;
if( (increase < bestIncr) || firstTime )
{
best = index;
bestArea = area;
bestIncr = increase;
firstTime = false;
}
else if( (increase == bestIncr) && (area < bestArea) )
{
best = index;
bestArea = area;
bestIncr = increase;
}
}
return best;
}
// Combine two rectangles into larger one containing both
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect( const Rect* a_rectA, const Rect* a_rectB ) const
{
ASSERT( a_rectA && a_rectB );
Rect newRect;
for( int index = 0; index < NUMDIMS; ++index )
{
newRect.m_min[index] = std::min( a_rectA->m_min[index], a_rectB->m_min[index] );
newRect.m_max[index] = std::max( a_rectA->m_max[index], a_rectB->m_max[index] );
}
return newRect;
}
// Split a node.
// Divides the nodes branches and the extra one between two nodes.
// Old node is one of the new ones, and one really new one is created.
// Tries more than one method for choosing a partition, uses best result.
RTREE_TEMPLATE
void RTREE_QUAL::SplitNode( Node* a_node, const Branch* a_branch, Node** a_newNode ) const
{
ASSERT( a_node );
ASSERT( a_branch );
// Could just use local here, but member or external is faster since it is reused
PartitionVars localVars;
PartitionVars* parVars = &localVars;
int level;
// Load all the branches into a buffer, initialize old node
level = a_node->m_level;
GetBranches( a_node, a_branch, parVars );
// Find partition
ChoosePartition( parVars, MINNODES );
// Put branches from buffer into 2 nodes according to chosen partition
*a_newNode = AllocNode();
(*a_newNode)->m_level = a_node->m_level = level;
LoadNodes( a_node, *a_newNode, parVars );
ASSERT( (a_node->m_count + (*a_newNode)->m_count) == parVars->m_total );
}
// Calculate the n-dimensional volume of a rectangle
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectVolume( const Rect* a_rect ) const
{
ASSERT( a_rect );
ELEMTYPEREAL volume = (ELEMTYPEREAL) 1;
for( int index = 0; index<NUMDIMS; ++index )
{
volume *= a_rect->m_max[index] - a_rect->m_min[index];
}
ASSERT( volume >= (ELEMTYPEREAL) 0 );
return volume;
}
// The exact volume of the bounding sphere for the given Rect
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume( const Rect* a_rect ) const
{
ASSERT( a_rect );
ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL) 0;
for( int index = 0; index < NUMDIMS; ++index )
{
ELEMTYPEREAL halfExtent =
( (ELEMTYPEREAL) a_rect->m_max[index] - (ELEMTYPEREAL) a_rect->m_min[index] ) * 0.5f;
sumOfSquares += halfExtent * halfExtent;
}
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
if( NUMDIMS == 2 )
{
return sumOfSquares * m_unitSphereVolume;
}
else if( NUMDIMS == 3 )
{
ELEMTYPEREAL radius = (ELEMTYPEREAL) std::sqrt( sumOfSquares );
return radius * radius * radius * m_unitSphereVolume;
}
else
{
ELEMTYPEREAL radius = (ELEMTYPEREAL) std::sqrt( sumOfSquares );
return (ELEMTYPEREAL) (std::pow( radius, NUMDIMS ) * m_unitSphereVolume);
}
}
// Use one of the methods to calculate retangle volume
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::CalcRectVolume( const Rect* a_rect ) const
{
#ifdef RTREE_USE_SPHERICAL_VOLUME
return RectSphericalVolume( a_rect ); // Slower but helps certain merge cases
#else // RTREE_USE_SPHERICAL_VOLUME
return RectVolume( a_rect ); // Faster but can cause poor merges
#endif // RTREE_USE_SPHERICAL_VOLUME
}
// Load branch buffer with branches from full node plus the extra branch.
RTREE_TEMPLATE
void RTREE_QUAL::GetBranches( Node* a_node, const Branch* a_branch, PartitionVars* a_parVars ) const
{
ASSERT( a_node );
ASSERT( a_branch );
ASSERT( a_node->m_count == MAXNODES );
// Load the branch buffer
for( int index = 0; index < MAXNODES; ++index )
{
a_parVars->m_branchBuf[index] = a_node->m_branch[index];
}
a_parVars->m_branchBuf[MAXNODES] = *a_branch;
a_parVars->m_branchCount = MAXNODES + 1;
// Calculate rect containing all in the set
a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
for( int index = 1; index < MAXNODES + 1; ++index )
{
a_parVars->m_coverSplit =
CombineRect( &a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect );
}
a_parVars->m_coverSplitArea = CalcRectVolume( &a_parVars->m_coverSplit );
InitNode( a_node );
}
// Method #0 for choosing a partition:
// As the seeds for the two groups, pick the two rects that would waste the
// most area if covered by a single rectangle, i.e. evidently the worst pair
// to have in the same group.
// Of the remaining, one at a time is chosen to be put in one of the two groups.
// The one chosen is the one with the greatest difference in area expansion
// depending on which group - the rect most strongly attracted to one group
// and repelled from the other.
// If one group gets too full (more would force other group to violate min
// fill requirement) then other group gets the rest.
// These last are the ones that can go in either group most easily.
RTREE_TEMPLATE
void RTREE_QUAL::ChoosePartition( PartitionVars* a_parVars, int a_minFill ) const
{
ASSERT( a_parVars );
ELEMTYPEREAL biggestDiff;
int group, chosen = 0, betterGroup = 0;
InitParVars( a_parVars, a_parVars->m_branchCount, a_minFill );
PickSeeds( a_parVars );
while( ( (a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total )
&& ( a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill) )
&& ( a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill) ) )
{
biggestDiff = (ELEMTYPEREAL) -1;
for( int index = 0; index<a_parVars->m_total; ++index )
{
if( !a_parVars->m_taken[index] )
{
const Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
const Rect rect0 = CombineRect( curRect, &a_parVars->m_cover[0] );
const Rect rect1 = CombineRect( curRect, &a_parVars->m_cover[1] );
ELEMTYPEREAL growth0 = CalcRectVolume( &rect0 ) - a_parVars->m_area[0];
ELEMTYPEREAL growth1 = CalcRectVolume( &rect1 ) - a_parVars->m_area[1];
ELEMTYPEREAL diff = growth1 - growth0;
if( diff >= 0 )
{
group = 0;
}
else
{
group = 1;
diff = -diff;
}
if( diff > biggestDiff )
{
biggestDiff = diff;
chosen = index;
betterGroup = group;
}
else if( (diff == biggestDiff)
&& (a_parVars->m_count[group] < a_parVars->m_count[betterGroup]) )
{
chosen = index;
betterGroup = group;
}
}
}
Classify( chosen, betterGroup, a_parVars );
}
// If one group too full, put remaining rects in the other
if( (a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total )
{
if( a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill )
{
group = 1;
}
else
{
group = 0;
}
for( int index = 0; index<a_parVars->m_total; ++index )
{
if( !a_parVars->m_taken[index] )
{
Classify( index, group, a_parVars );
}
}
}
ASSERT( (a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total );
ASSERT( (a_parVars->m_count[0] >= a_parVars->m_minFill)
&& (a_parVars->m_count[1] >= a_parVars->m_minFill) );
}
// Copy branches from the buffer into two nodes according to the partition.
RTREE_TEMPLATE
void RTREE_QUAL::LoadNodes( Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars ) const
{
ASSERT( a_nodeA );
ASSERT( a_nodeB );
ASSERT( a_parVars );
for( int index = 0; index < a_parVars->m_total; ++index )
{
ASSERT( a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1 );
if( a_parVars->m_partition[index] == 0 )
{
AddBranch( &a_parVars->m_branchBuf[index], a_nodeA, NULL );
}
else if( a_parVars->m_partition[index] == 1 )
{
AddBranch( &a_parVars->m_branchBuf[index], a_nodeB, NULL );
}
}
}
// Initialize a PartitionVars structure.
RTREE_TEMPLATE
void RTREE_QUAL::InitParVars( PartitionVars* a_parVars, int a_maxRects, int a_minFill ) const
{
ASSERT( a_parVars );
a_parVars->m_count[0] = a_parVars->m_count[1] = 0;
a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL) 0;
a_parVars->m_total = a_maxRects;
a_parVars->m_minFill = a_minFill;
for( int index = 0; index < a_maxRects; ++index )
{
a_parVars->m_taken[index] = false;
a_parVars->m_partition[index] = -1;
}
}
RTREE_TEMPLATE
void RTREE_QUAL::PickSeeds( PartitionVars* a_parVars ) const
{
int seed0 = 0, seed1 = 0;
ELEMTYPEREAL worst, waste;
ELEMTYPEREAL area[MAXNODES + 1];
for( int index = 0; index<a_parVars->m_total; ++index )
{
area[index] = CalcRectVolume( &a_parVars->m_branchBuf[index].m_rect );
}
worst = -a_parVars->m_coverSplitArea - 1;
for( int indexA = 0; indexA < a_parVars->m_total - 1; ++indexA )
{
for( int indexB = indexA + 1; indexB < a_parVars->m_total; ++indexB )
{
Rect oneRect = CombineRect( &a_parVars->m_branchBuf[indexA].m_rect,
&a_parVars->m_branchBuf[indexB].m_rect );
waste = CalcRectVolume( &oneRect ) - area[indexA] - area[indexB];
if( waste >= worst )
{
worst = waste;
seed0 = indexA;
seed1 = indexB;
}
}
}
Classify( seed0, 0, a_parVars );
Classify( seed1, 1, a_parVars );
}
// Put a branch in one of the groups.
RTREE_TEMPLATE
void RTREE_QUAL::Classify( int a_index, int a_group, PartitionVars* a_parVars ) const
{
ASSERT( a_parVars );
ASSERT( !a_parVars->m_taken[a_index] );
a_parVars->m_partition[a_index] = a_group;
a_parVars->m_taken[a_index] = true;
if( a_parVars->m_count[a_group] == 0 )
{
a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect;
}
else
{
a_parVars->m_cover[a_group] = CombineRect( &a_parVars->m_branchBuf[a_index].m_rect,
&a_parVars->m_cover[a_group] );
}
a_parVars->m_area[a_group] = CalcRectVolume( &a_parVars->m_cover[a_group] );
++a_parVars->m_count[a_group];
}
// Delete a data rectangle from an index structure.
// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
// Returns 1 if record not found, 0 if success.
// RemoveRect provides for eliminating the root.
RTREE_TEMPLATE
bool RTREE_QUAL::RemoveRect( const Rect* a_rect, const DATATYPE& a_id, Node** a_root ) const
{
ASSERT( a_rect && a_root );
ASSERT( *a_root );
Node* tempNode;
ListNode* reInsertList = NULL;
if( !RemoveRectRec( a_rect, a_id, *a_root, &reInsertList ) )
{
// Found and deleted a data item
// Reinsert any branches from eliminated nodes
while( reInsertList )
{
tempNode = reInsertList->m_node;
for( int index = 0; index < tempNode->m_count; ++index )
{
InsertRect( &(tempNode->m_branch[index].m_rect),
tempNode->m_branch[index].m_data,
a_root,
tempNode->m_level );
}
ListNode* remLNode = reInsertList;
reInsertList = reInsertList->m_next;
FreeNode( remLNode->m_node );
FreeListNode( remLNode );
}
// Check for redundant root (not leaf, 1 child) and eliminate
if( (*a_root)->m_count == 1 && (*a_root)->IsInternalNode() )
{
tempNode = (*a_root)->m_branch[0].m_child;
ASSERT( tempNode );
FreeNode( *a_root );
*a_root = tempNode;
}
return false;
}
else
{
return true;
}
}
// Delete a rectangle from non-root part of an index structure.
// Called by RemoveRect. Descends tree recursively,
// merges branches on the way back up.
// Returns 1 if record not found, 0 if success.
RTREE_TEMPLATE
bool RTREE_QUAL::RemoveRectRec( const Rect* a_rect,
const DATATYPE& a_id,
Node* a_node,
ListNode** a_listNode ) const
{
ASSERT( a_rect && a_node && a_listNode );
ASSERT( a_node->m_level >= 0 );
if( a_node->IsInternalNode() ) // not a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( Overlap( a_rect, &(a_node->m_branch[index].m_rect) ) )
{
if( !RemoveRectRec( a_rect, a_id, a_node->m_branch[index].m_child, a_listNode ) )
{
if( a_node->m_branch[index].m_child->m_count >= MINNODES )
{
// child removed, just resize parent rect
a_node->m_branch[index].m_rect =
NodeCover( a_node->m_branch[index].m_child );
}
else
{
// child removed, not enough entries in node, eliminate node
ReInsert( a_node->m_branch[index].m_child, a_listNode );
DisconnectBranch( a_node, index ); // Must return after this call as count has changed
}
return false;
}
}
}
return true;
}
else // A leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( a_node->m_branch[index].m_child == (Node*) a_id )
{
DisconnectBranch( a_node, index ); // Must return after this call as count has changed
return false;
}
}
return true;
}
}
// Decide whether two rectangles overlap.
RTREE_TEMPLATE
bool RTREE_QUAL::Overlap( const Rect* a_rectA, const Rect* a_rectB )
{
ASSERT( a_rectA && a_rectB );
for( int index = 0; index < NUMDIMS; ++index )
{
if( a_rectA->m_min[index] > a_rectB->m_max[index]
|| a_rectB->m_min[index] > a_rectA->m_max[index] )
{
return false;
}
}
return true;
}
// Add a node to the reinsertion list. All its branches will later
// be reinserted into the index structure.
RTREE_TEMPLATE
void RTREE_QUAL::ReInsert( Node* a_node, ListNode** a_listNode ) const
{
ListNode* newListNode;
newListNode = AllocListNode();
newListNode->m_node = a_node;
newListNode->m_next = *a_listNode;
*a_listNode = newListNode;
}
// Search in an index tree or subtree for all data rectangles that overlap the argument rectangle.
RTREE_TEMPLATE
bool RTREE_QUAL::Search( const Node* a_node, const Rect* a_rect, int& a_foundCount,
std::function<bool (const DATATYPE&)> a_callback ) const
{
ASSERT( a_node );
ASSERT( a_node->m_level >= 0 );
ASSERT( a_rect );
if( a_node->IsInternalNode() ) // This is an internal node in the tree
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
{
if( !Search( a_node->m_branch[index].m_child, a_rect, a_foundCount, a_callback ) )
{
return false; // Don't continue searching
}
}
}
}
else // This is a leaf node
{
for( int index = 0; index < a_node->m_count; ++index )
{
if( Overlap( a_rect, &a_node->m_branch[index].m_rect ) )
{
DATATYPE& id = a_node->m_branch[index].m_data;
++a_foundCount;
if( a_callback && !a_callback( id ) )
{
return false; // Don't continue searching
}
}
}
}
return true; // Continue searching
}
//calculate the minimum distance between a point and a rectangle as defined by Manolopoulos et al.
// returns Euclidean norm to ensure value fits in ELEMTYPE
RTREE_TEMPLATE
ELEMTYPE RTREE_QUAL::MinDist( const ELEMTYPE a_point[NUMDIMS], const Rect& a_rect ) const
{
const ELEMTYPE *q, *s, *t;
q = a_point;
s = a_rect.m_min;
t = a_rect.m_max;
double minDist = 0.0;
for( int index = 0; index < NUMDIMS; index++ )
{
int r = q[index];
if( q[index] < s[index] )
{
r = s[index];
}
else if( q[index] > t[index] )
{
r = t[index];
}
double addend = q[index] - r;
minDist += addend * addend;
}
return std::lround( std::sqrt( minDist ) );
}
#undef RTREE_TEMPLATE
#undef RTREE_QUAL
#undef RTREE_SEARCH_TEMPLATE
#undef RTREE_SEARCH_QUAL
#endif // RTREE_H