mirror of
https://gitlab.com/kicad/code/kicad.git
synced 2025-09-14 02:03:12 +02:00
Recommendation is to avoid using the year nomenclature as this information is already encoded in the git repo. Avoids needing to repeatly update. Also updates AUTHORS.txt from current repo with contributor names
243 lines
46 KiB
C++
243 lines
46 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2022 Mikolaj Wielgus
|
|
* Copyright The KiCad Developers, see AUTHORS.TXT for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <sim/sim_model_ngspice.h>
|
|
|
|
|
|
void NGSPICE_MODEL_INFO_MAP::addHICUM2()
|
|
{
|
|
modelInfos[MODEL_TYPE::HICUM2] = { "hicum2", "NPN", "PNP", { "C", "B", "E", "S", "TJ" }, "High Current Model for BJT" , {}, {} };
|
|
// Model parameters
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "type", 305, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "npn", "pnp", "For transistor type NPN(+1) or PNP (-1)" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "npn", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "NPN type device" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "pnp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "PNP type device" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tnom", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "300.15", "300.15", "Temperature at which parameters are specified" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tref", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "300.15", "300.15", "n.a." );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "version", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::DC, "2.4.0", "2.4.0", "parameter for model version" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "c10", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2e-30", "2e-30", "GICCR constant" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "qp0", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2e-14", "2e-14", "Zero-bias hole charge" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ich", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "High-current correction for 2D and 3D effects" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "hf0", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Weight factor for the low current minority charge" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "hfe", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Emitter minority charge weighting factor in HBTs" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "hfc", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Collector minority charge weighting factor in HBTs" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "hjei", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "B-E depletion charge weighting factor in HBTs" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ahjei", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Parameter describing the slope of hjEi(VBE)" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rhjei", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Smoothing parameter for hjEi(VBE) at high voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "hjci", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "B-C depletion charge weighting factor in HBTs" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ibeis", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-18", "1e-18", "Internal B-E saturation current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mbei", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Internal B-E current ideality factor" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ireis", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Internal B-E recombination saturation current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mrei", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Internal B-E recombination current ideality factor" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ibeps", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Peripheral B-E saturation current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mbep", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Peripheral B-E current ideality factor" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ireps", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Peripheral B-E recombination saturation current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mrep", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Peripheral B-E recombination current ideality factor" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mcf", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Non-ideality factor for III-V HBTs" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tbhrec", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Base current recombination time constant at B-C barrier for high forward injection" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ibcis", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-16", "1e-16", "Internal B-C saturation current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mbci", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Internal B-C current ideality factor" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ibcxs", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "External B-C saturation current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "mbcx", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "External B-C current ideality factor" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ibets", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-E tunneling saturation current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "abet", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "40", "40", "Exponent factor for tunneling current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tunode", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Specifies the base node connection for the tunneling current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "favl", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Avalanche current factor" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "qavl", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Exponent factor for avalanche current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "kavl", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Flag/factor for turning strong avalanche on" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alfav", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC for FAVL" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alqav", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC for QAVL" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alkav", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC for KAVL" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rbi0", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Zero bias internal base resistance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rbx", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "External base series resistance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fgeo", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.6557", "0.6557", "Factor for geometry dependence of emitter current crowding" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fdqr0", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Correction factor for modulation by B-E and B-C space charge layer" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fcrbi", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ratio of HF shunt to total internal capacitance (lateral NQS effect)" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fqi", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ration of internal to total minority charge" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "re", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Emitter series resistance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rcx", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "External collector series resistance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "itss", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate transistor transfer saturation current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "msf", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Forward ideality factor of substrate transfer current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "iscs", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "C-S diode saturation current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "msc", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideality factor of C-S diode current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tsf", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Transit time for forward operation of substrate transistor" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rsu", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate series resistance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "csu", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Substrate shunt capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cjei0", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1e-20", "1e-20", "Internal B-E zero-bias depletion capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vdei", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.9", "0.9", "Internal B-E built-in potential" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zei", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Internal B-E grading coefficient" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ajei", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "2.5", "2.5", "Ratio of maximum to zero-bias value of internal B-E capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "aljei", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "2.5", "2.5", "n.a." );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cjep0", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1e-20", "1e-20", "Peripheral B-E zero-bias depletion capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vdep", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.9", "0.9", "Peripheral B-E built-in potential" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zep", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Peripheral B-E grading coefficient" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ajep", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "2.5", "2.5", "Ratio of maximum to zero-bias value of peripheral B-E capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "aljep", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "2.5", "2.5", "n.a." );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cjci0", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1e-20", "1e-20", "Internal B-C zero-bias depletion capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vdci", 162, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.7", "0.7", "Internal B-C built-in potential" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zci", 163, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.4", "0.4", "Internal B-C grading coefficient" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vptci", 164, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "Internal B-C punch-through voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cjcx0", 165, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "1e-20", "1e-20", "External B-C zero-bias depletion capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vdcx", 166, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.7", "0.7", "External B-C built-in potential" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zcx", 167, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.4", "0.4", "External B-C grading coefficient" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vptcx", 168, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "External B-C punch-through voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fbcpar", 169, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Partitioning factor of parasitic B-C cap" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fbc", 169, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fbepar", 170, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Partitioning factor of parasitic B-E cap" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fbe", 170, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1", "1", "n.a." );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cjs0", 171, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "C-S zero-bias depletion capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vds", 172, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.6", "0.6", "C-S built-in potential" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zs", 173, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "C-S grading coefficient" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vpts", 174, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "C-S punch-through voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cscp0", 175, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Perimeter S-C zero-bias depletion capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vdsp", 176, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.6", "0.6", "Perimeter S-C built-in potential" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zsp", 177, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Perimeter S-C grading coefficient" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vptsp", 178, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "Perimeter S-C punch-through voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "t0", 179, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Low current forward transit time at VBC=0V" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "dt0h", 180, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Time constant for base and B-C space charge layer width modulation" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tbvl", 181, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Time constant for modeling carrier jam at low VCE" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tef0", 182, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Neutral emitter storage time" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "gtfe", 183, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Exponent factor for current dependence of neutral emitter storage time" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "thcs", 184, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Saturation time constant at high current densities" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ahc", 185, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Smoothing factor for current dependence of base and collector transit time" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alhc", 185, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0.1", "0.1", "n.a." );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "fthc", 186, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Partitioning factor for base and collector portion" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rci0", 187, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::DC, "150", "150", "Internal collector resistance at low electric field" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vlim", 188, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "Voltage separating ohmic and saturation velocity regime" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vces", 189, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Internal C-E saturation voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vpt", 190, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "100", "100", "Collector punch-through voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "aick", 191, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.001", "0.001", "Smoothing term for ICK" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "delck", 192, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Fitting factor for critical current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "tr", 193, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Storage time for inverse operation" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vcbar", 194, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Barrier voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "icbar", 195, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Normalization parameter" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "acbar", 196, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.01", "0.01", "Smoothing parameter for barrier voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cbepar", 197, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Total parasitic B-E capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ceox", 197, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cbcpar", 198, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Total parasitic B-C capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "ccox", 198, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "n.a." );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alqf", 199, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0.167", "0.167", "Factor for additional delay time of minority charge" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alit", 200, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.333", "0.333", "Factor for additional delay time of transfer current" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "flnqs", 201, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Flag for turning on and off of vertical NQS effect" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "kf", 202, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flicker noise coefficient" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "af", 203, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "2", "2", "Flicker noise exponent factor" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cfbe", 204, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flag for determining where to tag the flicker noise source" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "flcono", 205, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Flag for turning on and off of correlated noise implementation" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "kfre", 206, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "Emitter resistance flicker noise coefficient" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "afre", 207, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "2", "2", "Emitter resistance flicker noise exponent factor" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "latb", 208, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Scaling factor for collector minority charge in direction of emitter width" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "latl", 209, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Scaling factor for collector minority charge in direction of emitter length" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vgb", 210, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1.17", "1.17", "Bandgap voltage extrapolated to 0 K" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alt0", 211, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "First order relative TC of parameter T0" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "kt0", 212, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Second order relative TC of parameter T0" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetaci", 213, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent for RCI0" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alvs", 214, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m/s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC of saturation drift velocity" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alces", 215, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC of VCES" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetarbi", 216, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of internal base resistance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetarbx", 217, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of external base resistance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetarcx", 218, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of external collector resistance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetare", 219, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of emitter resistance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetacx", 220, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1", "1", "Temperature exponent of mobility in substrate transistor transit time" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vge", 221, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1.17", "1.17", "Effective emitter bandgap voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vgc", 222, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1.17", "1.17", "Effective collector bandgap voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vgs", 223, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "1.17", "1.17", "Effective substrate bandgap voltage" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "f1vg", 224, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "-0.000102377", "-0.000102377", "Coefficient K1 in T-dependent band-gap equation" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "f2vg", 225, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.00043215", "0.00043215", "Coefficient K2 in T-dependent band-gap equation" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetact", 226, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Exponent coefficient in transfer current temperature dependence" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetabet", 227, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3.5", "3.5", "Exponent coefficient in B-E junction current temperature dependence" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alb", 228, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Relative TC of forward current gain for V2.1 model" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "dvgbe", 229, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Bandgap difference between B and B-E junction used for hjEi0 and hf0" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetahjei", 230, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1", "1", "Temperature coefficient for ahjEi" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetavgbe", 231, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "1", "1", "Temperature coefficient for hjEi0" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "flsh", 232, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Flag for turning on and off self-heating effect" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "rth", 233, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Thermal resistance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "zetarth", 234, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature coefficient for Rth" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "alrth", 235, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "First order relative TC of parameter Rth" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "cth", 236, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Thermal capacitance" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "flcomp", 237, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Flag for compatibility with v2.1 model (0=v2.1)" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vbe_max", 238, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-E junction" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vbc_max", 239, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-C junction" );
|
|
modelInfos[MODEL_TYPE::HICUM2].modelParams.emplace_back( "vce_max", 240, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage C-E branch" );
|
|
// Instance parameters
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Area factor", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "off", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ic", 3, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial condition vector", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "m", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Multiplier", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "temp", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance temperature", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "dt", 5, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Instance delta temperature", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "tk", 264, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Actual device temperature", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "dtsh", 265, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Temperature increase due to self-heating", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "it", 284, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "transfer current", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "collnode", 251, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of collector node", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "basenode", 252, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of base node", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "emitnode", 253, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of emitter node", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "subsnode", 254, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of substrate node", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "tempnode", 255, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of temperature node", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "collcinode", 256, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal collector node", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "basebpnode", 257, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External base node", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "basebinode", 258, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "emiteinode", 259, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal emitter node", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "subssinode", 260, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal substrate node", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "xfnode", 261, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal phase node xf", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "xf1node", 262, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal phase node xf1", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "xf2node", 263, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal phase node xf2", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbe", 266, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External BE voltage", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbbp", 267, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "BBP voltage", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbc", 268, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External BC voltage", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vce", 269, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External CE voltage", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vsc", 270, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External SC voltage", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbiei", 271, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal BE voltage", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbpbi", 272, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Peripheral Base to internal Base voltage", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vbici", 273, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal BC voltage", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "vciei", 274, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal CE voltage", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ic", 275, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Collector current", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "iavl", 276, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Avalanche current", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ib", 277, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Base current", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ibei", 280, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Intenral Base Emitter current", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ibci", 281, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal Base Collector current", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ie", 278, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Emitter current", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "is", 279, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Substrate current", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rcx_t", 282, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External (saturated) collector series resistance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "re_t", 283, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Emitter series resistance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rbi", 285, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base resistance as calculated in the model", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rb", 286, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total base resistance as calculated in the model", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "betadc", 287, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Common emitter forward current gain", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "gmi", 288, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal transconductance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "gms", 289, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transconductance of the parasitic substrate PNP", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rpii", 290, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base-emitter (input) resistance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rpix", 291, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External base-emitter (input) resistance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rmui", 292, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal feedback resistance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "rmux", 293, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External feedback resistance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "roi", 294, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "ohm", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Output resistance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "cpii", 295, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total internal BE capacitance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "cpix", 296, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total external BE capacitance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "cmui", 297, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total internal BC capacitance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "cmux", 298, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Total external BC capacitance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ccs", 299, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "CS junction capacitance", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "betaac", 300, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal current gain", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "crbi", 301, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Shunt capacitance across RBI as calculated in the model", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "tf", 302, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Forward transit time", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ft", 303, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "Hz", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transit frequency", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "ick", 304, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "Hz", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Transit frequency", true );
|
|
modelInfos[MODEL_TYPE::HICUM2].instanceParams.emplace_back( "p", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Power dissipation", true );
|
|
} |