kicad-source/pcbnew/zones_convert_to_polygons_aux_functions.cpp
jean-pierre charras 178cf0dc25 Polygon calculation (zones filling): use fast mode when possible (in fact most of time) and strictly simple polygon option only in critical cases (in fact in plot Gerber functions mainly).
In polygon calculations (combining polygons, fracture) the mode of calculation (fast or strictly simple polygon option) as no more a default value, because choosing the best mode is better to optimize the calculation time.
2015-12-15 21:21:25 +01:00

252 lines
10 KiB
C++

/**
* @file zones_convert_to_polygons_aux_functions.cpp
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr
* Copyright (C) 1992-2013 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <fctsys.h>
#include <PolyLine.h>
#include <wxPcbStruct.h>
#include <trigo.h>
#include <class_board.h>
#include <class_module.h>
#include <class_zone.h>
#include <pcbnew.h>
#include <zones.h>
/* Function TransformOutlinesShapeWithClearanceToPolygon
* Convert the zone filled areas polygons to polygons
* inflated (optional) by max( aClearanceValue, the zone clearance)
* and copy them in aCornerBuffer
* param aClearanceValue = the clearance around polygons
* param aAddClearance = true to add a clearance area to the polygon
* false to create the outline polygon.
*/
void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon(
SHAPE_POLY_SET& aCornerBuffer, int aMinClearanceValue, bool aUseNetClearance )
{
// Creates the zone outline polygon (with holes if any)
SHAPE_POLY_SET polybuffer;
BuildFilledSolidAreasPolygons( NULL, &polybuffer );
// add clearance to outline
int clearance = aMinClearanceValue;
if( aUseNetClearance && IsOnCopperLayer() )
{
clearance = GetClearance();
if( aMinClearanceValue > clearance )
clearance = aMinClearanceValue;
}
// Calculate the polygon with clearance
// holes are linked to the main outline, so only one polygon is created.
if( clearance )
polybuffer.Inflate( clearance, 16 );
polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST );
aCornerBuffer.Append( polybuffer );
}
/**
* Function BuildUnconnectedThermalStubsPolygonList
* Creates a set of polygons corresponding to stubs created by thermal shapes on pads
* which are not connected to a zone (dangling bridges)
* @param aCornerBuffer = a SHAPE_POLY_SET where to store polygons
* @param aPcb = the board.
* @param aZone = a pointer to the ZONE_CONTAINER to examine.
* @param aArcCorrection = a pointer to the ZONE_CONTAINER to examine.
* @param aRoundPadThermalRotation = the rotation in 1.0 degree for thermal stubs in round pads
*/
void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer,
BOARD* aPcb,
ZONE_CONTAINER* aZone,
double aArcCorrection,
double aRoundPadThermalRotation )
{
std::vector<wxPoint> corners_buffer; // a local polygon buffer to store one stub
corners_buffer.reserve( 4 );
wxPoint ptTest[4];
int zone_clearance = aZone->GetZoneClearance();
EDA_RECT item_boundingbox;
EDA_RECT zone_boundingbox = aZone->GetBoundingBox();
int biggest_clearance = aPcb->GetDesignSettings().GetBiggestClearanceValue();
biggest_clearance = std::max( biggest_clearance, zone_clearance );
zone_boundingbox.Inflate( biggest_clearance );
// half size of the pen used to draw/plot zones outlines
int pen_radius = aZone->GetMinThickness() / 2;
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() )
{
for( D_PAD* pad = module->Pads(); pad != NULL; pad = pad->Next() )
{
// Rejects non-standard pads with tht-only thermal reliefs
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL
&& pad->GetAttribute() != PAD_ATTRIB_STANDARD )
continue;
if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL
&& aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL )
continue;
// check
if( !pad->IsOnLayer( aZone->GetLayer() ) )
continue;
if( pad->GetNetCode() != aZone->GetNetCode() )
continue;
// Calculate thermal bridge half width
int thermalBridgeWidth = aZone->GetThermalReliefCopperBridge( pad )
- aZone->GetMinThickness();
if( thermalBridgeWidth <= 0 )
continue;
// we need the thermal bridge half width
// with a small extra size to be sure we create a stub
// slightly larger than the actual stub
thermalBridgeWidth = ( thermalBridgeWidth + 4 ) / 2;
int thermalReliefGap = aZone->GetThermalReliefGap( pad );
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( thermalReliefGap );
if( !( item_boundingbox.Intersects( zone_boundingbox ) ) )
continue;
// Thermal bridges are like a segment from a starting point inside the pad
// to an ending point outside the pad
// calculate the ending point of the thermal pad, outside the pad
wxPoint endpoint;
endpoint.x = ( pad->GetSize().x / 2 ) + thermalReliefGap;
endpoint.y = ( pad->GetSize().y / 2 ) + thermalReliefGap;
// Calculate the starting point of the thermal stub
// inside the pad
wxPoint startpoint;
int copperThickness = aZone->GetThermalReliefCopperBridge( pad )
- aZone->GetMinThickness();
if( copperThickness < 0 )
copperThickness = 0;
// Leave a small extra size to the copper area inside to pad
copperThickness += KiROUND( IU_PER_MM * 0.04 );
startpoint.x = std::min( pad->GetSize().x, copperThickness );
startpoint.y = std::min( pad->GetSize().y, copperThickness );
startpoint.x /= 2;
startpoint.y /= 2;
// This is a CIRCLE pad tweak
// for circle pads, the thermal stubs orientation is 45 deg
double fAngle = pad->GetOrientation();
if( pad->GetShape() == PAD_SHAPE_CIRCLE )
{
endpoint.x = KiROUND( endpoint.x * aArcCorrection );
endpoint.y = endpoint.x;
fAngle = aRoundPadThermalRotation;
}
// contour line width has to be taken into calculation to avoid "thermal stub bleed"
endpoint.x += pen_radius;
endpoint.y += pen_radius;
// compute north, south, west and east points for zone connection.
ptTest[0] = wxPoint( 0, endpoint.y ); // lower point
ptTest[1] = wxPoint( 0, -endpoint.y ); // upper point
ptTest[2] = wxPoint( endpoint.x, 0 ); // right point
ptTest[3] = wxPoint( -endpoint.x, 0 ); // left point
// Test all sides
for( int i = 0; i < 4; i++ )
{
// rotate point
RotatePoint( &ptTest[i], fAngle );
// translate point
ptTest[i] += pad->ShapePos();
if( aZone->HitTestFilledArea( ptTest[i] ) )
continue;
corners_buffer.clear();
// polygons are rectangles with width of copper bridge value
switch( i )
{
case 0: // lower stub
corners_buffer.push_back( wxPoint( -thermalBridgeWidth, endpoint.y ) );
corners_buffer.push_back( wxPoint( +thermalBridgeWidth, endpoint.y ) );
corners_buffer.push_back( wxPoint( +thermalBridgeWidth, startpoint.y ) );
corners_buffer.push_back( wxPoint( -thermalBridgeWidth, startpoint.y ) );
break;
case 1: // upper stub
corners_buffer.push_back( wxPoint( -thermalBridgeWidth, -endpoint.y ) );
corners_buffer.push_back( wxPoint( +thermalBridgeWidth, -endpoint.y ) );
corners_buffer.push_back( wxPoint( +thermalBridgeWidth, -startpoint.y ) );
corners_buffer.push_back( wxPoint( -thermalBridgeWidth, -startpoint.y ) );
break;
case 2: // right stub
corners_buffer.push_back( wxPoint( endpoint.x, -thermalBridgeWidth ) );
corners_buffer.push_back( wxPoint( endpoint.x, thermalBridgeWidth ) );
corners_buffer.push_back( wxPoint( +startpoint.x, thermalBridgeWidth ) );
corners_buffer.push_back( wxPoint( +startpoint.x, -thermalBridgeWidth ) );
break;
case 3: // left stub
corners_buffer.push_back( wxPoint( -endpoint.x, -thermalBridgeWidth ) );
corners_buffer.push_back( wxPoint( -endpoint.x, thermalBridgeWidth ) );
corners_buffer.push_back( wxPoint( -startpoint.x, thermalBridgeWidth ) );
corners_buffer.push_back( wxPoint( -startpoint.x, -thermalBridgeWidth ) );
break;
}
aCornerBuffer.NewOutline();
// add computed polygon to list
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, fAngle ); // Rotate according to module orientation
cpos += pad->ShapePos(); // Shift origin to position
aCornerBuffer.Append( cpos.x, cpos.y );
}
}
}
}
}