mirror of
https://gitlab.com/kicad/code/kicad.git
synced 2025-09-14 02:03:12 +02:00
Recommendation is to avoid using the year nomenclature as this information is already encoded in the git repo. Avoids needing to repeatly update. Also updates AUTHORS.txt from current repo with contributor names
195 lines
35 KiB
C++
195 lines
35 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2022 Mikolaj Wielgus
|
|
* Copyright The KiCad Developers, see AUTHORS.TXT for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <sim/sim_model_ngspice.h>
|
|
|
|
|
|
void NGSPICE_MODEL_INFO_MAP::addVBIC()
|
|
{
|
|
modelInfos[MODEL_TYPE::VBIC] = { "VBIC", "NPN", "PNP", { "C", "B", "E", "<S>", "<TJ>" }, "Vertical Bipolar Inter-Company Model", {}, {} };
|
|
// Model parameters
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "type", 305, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_STRING, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "npn", "pnp", "NPN or PNP" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "npn", 101, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "NPN type device" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "pnp", 102, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "NaN", "NaN", "PNP type device" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tnom", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "27", "27", "Parameter measurement temperature" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tref", 103, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "27", "27", "n.a." );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rcx", 104, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Extrinsic coll resistance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rci", 105, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Intrinsic coll resistance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vo", 106, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi drift saturation voltage" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "gamm", 107, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi doping parameter" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "hrcf", 108, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "High current RC factor" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rbx", 109, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Extrinsic base resistance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rbi", 110, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Intrinsic base resistance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "re", 111, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Intrinsic emitter resistance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rs", 112, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Intrinsic substrate resistance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rbp", 113, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Parasitic base resistance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "is_", 114, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-16", "1e-16", "Transport saturation current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nf", 115, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Forward emission coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nr", 116, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Reverse emission coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "fc", 117, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0.9", "0.9", "Fwd bias depletion capacitance limit" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cbeo", 118, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Extrinsic B-E overlap capacitance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cje", 119, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias B-E depletion capacitance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "pe", 120, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "B-E built in potential" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "me", 121, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "B-E junction grading coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "aje", 122, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "-0.5", "-0.5", "B-E capacitance smoothing factor" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cbco", 123, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F/m", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Extrinsic B-C overlap capacitance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cjc", 124, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias B-C depletion capacitance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "qco", 125, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "C", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Epi charge parameter" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cjep", 126, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "B-C extrinsic zero bias capacitance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "pc", 127, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "B-C built in potential" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "mc", 128, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "B-C junction grading coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ajc", 129, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "-0.5", "-0.5", "B-C capacitance smoothing factor" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cjcp", 130, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Zero bias S-C capacitance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ps", 131, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0.75", "0.75", "S-C junction built in potential" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ms", 132, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.33", "0.33", "S-C junction grading coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ajs", 133, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "-0.5", "-0.5", "S-C capacitance smoothing factor" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibei", 134, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-18", "1e-18", "Ideal B-E saturation current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "wbe", 135, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Portion of IBEI from Vbei, 1-WBE from Vbex" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nei", 136, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal B-E emission coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "iben", 137, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Non-ideal B-E saturation current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nen", 138, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Non-ideal B-E emission coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibci", 139, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-16", "1e-16", "Ideal B-C saturation current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nci", 140, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal B-C emission coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibcn", 141, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Non-ideal B-C saturation current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ncn", 142, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Non-ideal B-C emission coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "avc1", 143, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-C weak avalanche parameter 1" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "avc2", 144, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-C weak avalanche parameter 2" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "isp", 145, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Parasitic transport saturation current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "wsp", 146, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Portion of ICCP" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nfp", 147, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Parasitic fwd emission coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibeip", 148, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal parasitic B-E saturation current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibenp", 149, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Non-ideal parasitic B-E saturation current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibcip", 150, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal parasitic B-C saturation current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ncip", 151, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Ideal parasitic B-C emission coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibcnp", 152, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Nonideal parasitic B-C saturation current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ncnp", 153, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "2", "2", "Nonideal parasitic B-C emission coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vef", 154, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward Early voltage" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ver", 155, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reverse Early voltage" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ikf", 156, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward knee current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ikr", 157, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reverse knee current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ikp", 158, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Parasitic knee current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tf", 159, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal forward transit time" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "qtf", 160, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "m", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Variation of TF with base-width modulation" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xtf", 161, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Coefficient for bias dependence of TF" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vtf", 162, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Voltage giving VBC dependence of TF" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "itf", 163, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "High current dependence of TF" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tr", 164, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Ideal reverse transit time" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "td", 165, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "s", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Forward excess-phase delay time" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "kfn", 166, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "0", "0", "B-E Flicker Noise Coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "afn", 167, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "B-E Flicker Noise Exponent" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "bfn", 168, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::NOISE, "1", "1", "B-E Flicker Noise 1/f dependence" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xre", 169, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RE" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrb", 170, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RB" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrbi", 171, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RBI" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrc", 172, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RC" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrci", 173, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RCI" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrs", 174, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RS" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xvo", 175, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of VO" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ea", 176, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IS" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eaie", 177, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBEI" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eaic", 178, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCI/IBEIP" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eais", 179, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCIP" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eane", 180, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBEN" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eanc", 181, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCN/IBENP" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eans", 182, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Activation energy for IBCNP" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xis", 183, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Temperature exponent of IS" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xii", 184, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Temperature exponent of IBEI,IBCI,IBEIP,IBCIP" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xin", 185, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "3", "3", "Temperature exponent of IBEN,IBCN,IBENP,IBCNP" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tnf", 186, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of NF" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tavc", 187, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of AVC2" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "rth", 188, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "Ω", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Thermal resistance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "cth", 189, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Thermal capacitance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vrt", 190, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Punch-through voltage of internal B-C junction" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "art", 191, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0.1", "0.1", "Smoothing parameter for reach-through" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ccso", 192, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::CAPACITANCE, "0", "0", "Fixed C-S capacitance" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "qbm", 193, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Select SGP qb formulation" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nkf", 194, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "0.5", "0.5", "High current beta rolloff" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xikf", 195, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of IKF" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrcx", 196, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RCX" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrbx", 197, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RBX" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xrbp", 198, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of RBP" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "isrr", 199, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "Separate IS for fwd and rev" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "xisr", 200, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature exponent of ISR" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "dear", 201, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Delta activation energy for ISRR" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "eap", 202, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "eV", SIM_MODEL::PARAM::CATEGORY::DC, "1.12", "1.12", "Exitivation energy for ISP" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vbbe", 203, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "B-E breakdown voltage" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "nbbe", 204, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1", "1", "B-E breakdown emission coefficient" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ibbe", 205, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::DC, "1e-06", "1e-06", "B-E breakdown current" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tvbbe1", 206, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Linear temperature coefficient of VBBE" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tvbbe2", 207, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Quadratic temperature coefficient of VBBE" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "tnbbe", 208, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Temperature coefficient of NBBE" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "ebbe", 209, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "exp(-VBBE/(NBBE*Vtv))" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "dtemp_", 210, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::TEMPERATURE, "0", "0", "Locale Temperature difference" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vers", 211, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "1.2", "1.2", "Revision Version" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vref", 212, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::DC, "0", "0", "Reference Version" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vbe_max", 213, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-E junction" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vbc_max", 214, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage B-C junction" );
|
|
modelInfos[MODEL_TYPE::VBIC].modelParams.emplace_back( "vce_max", 215, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::LIMITING_VALUES, "1e+99", "1e+99", "maximum voltage C-E branch" );
|
|
// Instance parameters
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "m", 8, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Multiplier", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "area", 1, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::GEOMETRY, "", "", "Area factor", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "off", 2, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_BOOL, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Device initially off", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ic", 3, SIM_MODEL::PARAM::DIR_IN, SIM_VALUE::TYPE_FLOAT_VECTOR, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial condition vector", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "icvbe", 4, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial B-E voltage", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "icvce", 5, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Initial C-E voltage", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "temp", 6, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::PRINCIPAL, "", "", "Instance temperature", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "dtemp", 7, SIM_MODEL::PARAM::DIR_INOUT, SIM_VALUE::TYPE_FLOAT, "°C", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "0", "0", "Instance delta temperature", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "collnode", 222, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of collector node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basenode", 223, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of base node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "emitnode", 224, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of emitter node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "subsnode", 225, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Number of substrate node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "collcxnode", 226, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal collector node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "collcinode", 227, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal collector node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basebxnode", 228, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basebinode", 229, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "basebpnode", 230, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "emiteinode", 231, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal emitter node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "subssinode", 232, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_INT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal substrate node", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "vbe", 233, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-E voltage", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "vbc", 234, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "V", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "B-C voltage", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ic", 235, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Collector current", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ib", 236, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Base current", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "ie", 237, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Emitter current", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "is", 238, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "A", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "1e-16", "1e-16", "Substrate current", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gm", 239, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal transconductance dIc/dVbe", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "go", 240, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal output conductance dIc/dVbc", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gpi", 241, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal input conductance dIb/dVbe", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gmu", 242, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Small signal conductance dIb/dVbc", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "gx", 243, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Conductance from base to internal base", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbe", 257, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base to emitter capacitance", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbex", 258, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External base to emitter capacitance", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbc", 259, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal base to collector capacitance", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbcx", 260, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External Base to collector capacitance", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbep", 261, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Parasitic Base to emitter capacitance", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cbcp", 262, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Parasitic Base to collector capacitance", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "p", 263, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Power dissipation", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "geqcb", 253, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Internal C-B-base cap. equiv. cond.", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "geqbx", 256, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "External C-B-base cap. equiv. cond.", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "qbe", 244, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-E junction", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cqbe", 245, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-E jct.", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "qbc", 246, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-C junction", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cqbc", 247, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-C jct.", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "qbx", 248, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Charge storage B-X junction", true );
|
|
modelInfos[MODEL_TYPE::VBIC].instanceParams.emplace_back( "cqbx", 249, SIM_MODEL::PARAM::DIR_OUT, SIM_VALUE::TYPE_FLOAT, "F", SIM_MODEL::PARAM::CATEGORY::SUPERFLUOUS, "", "", "Cap. due to charge storage in B-X jct.", true );
|
|
} |