Seth Hillbrand 0b2d4d4879 Revise Copyright statement to align with TLF
Recommendation is to avoid using the year nomenclature as this
information is already encoded in the git repo.  Avoids needing to
repeatly update.

Also updates AUTHORS.txt from current repo with contributor names
2025-01-01 14:12:04 -08:00

328 lines
8.8 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file triangle_3d.cpp
*/
#include "triangle_3d.h"
void TRIANGLE::pre_calc_const()
{
const SFVEC3F& A = m_vertex[0];
const SFVEC3F& B = m_vertex[1];
const SFVEC3F& C = m_vertex[2];
const SFVEC3F c = B - A;
const SFVEC3F b = C - A;
m_bbox.Reset();
m_bbox.Set( A );
m_bbox.Union( B );
m_bbox.Union( C );
m_bbox.ScaleNextUp();
m_centroid = m_bbox.GetCenter();
m_n = glm::cross( b, c );
if( glm::abs( m_n.x ) > glm::abs( m_n.y ) )
{
if( glm::abs( m_n.x ) > glm::abs( m_n.z ) )
m_k = 0;
else
m_k = 2;
}
else
{
if( glm::abs( m_n.y ) > glm::abs( m_n.z ) )
m_k = 1;
else
m_k = 2;
}
int u = ( m_k + 1 ) % 3;
int v = ( m_k + 2 ) % 3;
// precomp
float krec = 1.0f / m_n[m_k];
m_nu = m_n[u] * krec;
m_nv = m_n[v] * krec;
m_nd = glm::dot( m_n, A ) * krec;
// first line equation
float reci = 1.0f / (b[u] * c[v] - b[v] * c[u]);
m_bnu = b[u] * reci;
m_bnv = -b[v] * reci;
// second line equation
m_cnu = c[v] * reci;
m_cnv = -c[u] * reci;
// finalize normal
m_n = glm::normalize( m_n );
m_normal[0] = m_n;
m_normal[1] = m_n;
m_normal[2] = m_n;
}
TRIANGLE::TRIANGLE( const SFVEC3F& aV1, const SFVEC3F& aV2, const SFVEC3F& aV3 )
: OBJECT_3D( OBJECT_3D_TYPE::TRIANGLE )
{
m_vertex[0] = aV1;
m_vertex[1] = aV2;
m_vertex[2] = aV3;
m_vertexColorRGBA[0] = 0xFFFFFFFF;
m_vertexColorRGBA[1] = 0xFFFFFFFF;
m_vertexColorRGBA[2] = 0xFFFFFFFF;
pre_calc_const();
}
TRIANGLE::TRIANGLE( const SFVEC3F& aV1, const SFVEC3F& aV2, const SFVEC3F& aV3,
const SFVEC3F& aFaceNormal )
: OBJECT_3D( OBJECT_3D_TYPE::TRIANGLE )
{
m_vertex[0] = aV1;
m_vertex[1] = aV2;
m_vertex[2] = aV3;
m_vertexColorRGBA[0] = 0xFFFFFFFF;
m_vertexColorRGBA[1] = 0xFFFFFFFF;
m_vertexColorRGBA[2] = 0xFFFFFFFF;
pre_calc_const();
m_normal[0] = aFaceNormal;
m_normal[1] = aFaceNormal;
m_normal[2] = aFaceNormal;
}
TRIANGLE::TRIANGLE( const SFVEC3F& aV1, const SFVEC3F& aV2, const SFVEC3F& aV3,
const SFVEC3F& aN1, const SFVEC3F& aN2, const SFVEC3F& aN3 )
: OBJECT_3D( OBJECT_3D_TYPE::TRIANGLE )
{
m_vertex[0] = aV1;
m_vertex[1] = aV2;
m_vertex[2] = aV3;
m_vertexColorRGBA[0] = 0xFFFFFFFF;
m_vertexColorRGBA[1] = 0xFFFFFFFF;
m_vertexColorRGBA[2] = 0xFFFFFFFF;
pre_calc_const();
m_normal[0] = aN1;
m_normal[1] = aN2;
m_normal[2] = aN3;
}
void TRIANGLE::SetColor( const SFVEC3F& aColor )
{
m_vertexColorRGBA[0] = ( (unsigned int) ( aColor.r * 255 ) << 24 )
| ( (unsigned int) ( aColor.g * 255 ) << 16 )
| ( (unsigned int) ( aColor.b * 255 ) << 8 ) | 0xFF;
m_vertexColorRGBA[1] = m_vertexColorRGBA[0];
m_vertexColorRGBA[2] = m_vertexColorRGBA[0];
}
void TRIANGLE::SetColor( const SFVEC3F& aVC0, const SFVEC3F& aVC1, const SFVEC3F& aVC2 )
{
m_vertexColorRGBA[0] = ( (unsigned int) ( aVC0.r * 255 ) << 24 )
| ( (unsigned int) ( aVC0.g * 255 ) << 16 )
| ( (unsigned int) ( aVC0.b * 255 ) << 8 ) | 0xFF;
m_vertexColorRGBA[1] = ( (unsigned int) ( aVC1.r * 255 ) << 24 )
| ( (unsigned int) ( aVC1.g * 255 ) << 16 )
| ( (unsigned int) ( aVC1.b * 255 ) << 8 ) | 0xFF;
m_vertexColorRGBA[2] = ( (unsigned int) ( aVC2.r * 255 ) << 24 )
| ( (unsigned int) ( aVC2.g * 255 ) << 16 )
| ( (unsigned int) ( aVC2.b * 255 ) << 8 ) | 0xFF;
}
void TRIANGLE::SetColor( unsigned int aFaceColorRGBA )
{
m_vertexColorRGBA[0] = aFaceColorRGBA;
m_vertexColorRGBA[1] = aFaceColorRGBA;
m_vertexColorRGBA[2] = aFaceColorRGBA;
}
void TRIANGLE::SetColor( unsigned int aVertex1ColorRGBA, unsigned int aVertex2ColorRGBA,
unsigned int aVertex3ColorRGBA )
{
m_vertexColorRGBA[0] = aVertex1ColorRGBA;
m_vertexColorRGBA[1] = aVertex2ColorRGBA;
m_vertexColorRGBA[2] = aVertex3ColorRGBA;
}
void TRIANGLE::SetUV( const SFVEC2F& aUV1, const SFVEC2F& aUV2, const SFVEC2F& aUV3 )
{
m_uv[0] = aUV1;
m_uv[1] = aUV2;
m_uv[2] = aUV3;
}
static const unsigned int s_modulo[] = { 0, 1, 2, 0, 1 };
bool TRIANGLE::Intersect( const RAY& aRay, HITINFO& aHitInfo ) const
{
//!TODO: precalc this, improve it
#define ku s_modulo[m_k + 1]
#define kv s_modulo[m_k + 2]
const SFVEC3F& O = aRay.m_Origin;
const SFVEC3F& D = aRay.m_Dir;
const SFVEC3F& A = m_vertex[0];
const float lnd = 1.0f / (D[m_k] + m_nu * D[ku] + m_nv * D[kv]);
const float t = ( m_nd - O[m_k] - m_nu * O[ku] - m_nv * O[kv] ) * lnd;
if( !( ( aHitInfo.m_tHit > t ) && ( t > 0.0f ) ) )
return false;
const float hu = O[ku] + t * D[ku] - A[ku];
const float hv = O[kv] + t * D[kv] - A[kv];
const float beta = hv * m_bnu + hu * m_bnv;
if( beta < 0.0f )
return false;
const float gamma = hu * m_cnu + hv * m_cnv;
if( gamma < 0 )
return false;
const float v = gamma;
const float u = beta;
if( (u + v) > 1.0f )
return false;
if( glm::dot( D, m_n ) > 0.0f )
return false;
aHitInfo.m_tHit = t;
aHitInfo.m_HitPoint = aRay.at( t );
// interpolate vertex normals with UVW using Gouraud's shading
aHitInfo.m_HitNormal =
glm::normalize( ( 1.0f - u - v ) * m_normal[0] + u * m_normal[1] + v * m_normal[2] );
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
aHitInfo.pHitObject = this;
return true;
#undef ku
#undef kv
}
bool TRIANGLE::IntersectP( const RAY& aRay, float aMaxDistance ) const
{
//!TODO: precalc this
#define ku s_modulo[m_k + 1]
#define kv s_modulo[m_k + 2]
const SFVEC3F O = aRay.m_Origin;
const SFVEC3F D = aRay.m_Dir;
const SFVEC3F A = m_vertex[0];
const float lnd = 1.0f / (D[m_k] + m_nu * D[ku] + m_nv * D[kv]);
const float t = ( m_nd - O[m_k] - m_nu * O[ku] - m_nv * O[kv] ) * lnd;
if( !( ( aMaxDistance > t ) && ( t > 0.0f ) ) )
return false;
const float hu = O[ku] + t * D[ku] - A[ku];
const float hv = O[kv] + t * D[kv] - A[kv];
const float beta = hv * m_bnu + hu * m_bnv;
if( beta < 0.0f )
return false;
const float gamma = hu * m_cnu + hv * m_cnv;
if( gamma < 0.0f )
return false;
const float v = gamma;
const float u = beta;
if( (u + v) > 1.0f )
return false;
if( glm::dot( D, m_n ) > 0.0f )
return false;
return true;
#undef ku
#undef kv
}
bool TRIANGLE::Intersects( const BBOX_3D& aBBox ) const
{
//!TODO: improve
return m_bbox.Intersects( aBBox );
}
SFVEC3F TRIANGLE::GetDiffuseColor( const HITINFO& aHitInfo ) const
{
const unsigned int rgbC1 = m_vertexColorRGBA[0];
const unsigned int rgbC2 = m_vertexColorRGBA[1];
const unsigned int rgbC3 = m_vertexColorRGBA[2];
const SFVEC3F c1 = SFVEC3F( (float) ( ( rgbC1 >> 24 ) & 0xFF ) / 255.0f,
(float) ( ( rgbC1 >> 16 ) & 0xFF ) / 255.0f,
(float) ( ( rgbC1 >> 8 ) & 0xFF ) / 255.0f );
const SFVEC3F c2 = SFVEC3F( (float) ( ( rgbC2 >> 24 ) & 0xFF ) / 255.0f,
(float) ( ( rgbC2 >> 16 ) & 0xFF ) / 255.0f,
(float) ( ( rgbC2 >> 8 ) & 0xFF ) / 255.0f );
const SFVEC3F c3 = SFVEC3F( (float) ( ( rgbC3 >> 24 ) & 0xFF ) / 255.0f,
(float) ( ( rgbC3 >> 16 ) & 0xFF ) / 255.0f,
(float) ( ( rgbC3 >> 8 ) & 0xFF ) / 255.0f );
const float u = aHitInfo.m_UV.x;
const float v = aHitInfo.m_UV.y;
const float w = 1.0f - u - v;
return w * c1 + u * c2 + v * c3;
}