Seth Hillbrand 0b2d4d4879 Revise Copyright statement to align with TLF
Recommendation is to avoid using the year nomenclature as this
information is already encoded in the git repo.  Avoids needing to
repeatly update.

Also updates AUTHORS.txt from current repo with contributor names
2025-01-01 14:12:04 -08:00

326 lines
11 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2022 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "material.h"
#include <3d_math.h>
#include <wx/debug.h>
int MATERIAL::m_defaultRefractionRayCount = 4;
int MATERIAL::m_defaultReflectionRayCount = 3;
int MATERIAL::m_defaultRefractionRecursionCount = 2;
int MATERIAL::m_defaultFeflectionRecursionCount = 3;
// This may be a good value if based on nr of lights
// that contribute to the illumination of that point
#define AMBIENT_FACTOR (1.0f / 6.0f)
#define SPECULAR_FACTOR 1.0f
MATERIAL::MATERIAL()
{
m_ambientColor = SFVEC3F( 0.2f, 0.2f, 0.2f );
m_emissiveColor = SFVEC3F( 0.0f, 0.0f, 0.0f );
m_specularColor = SFVEC3F( 1.0f, 1.0f, 1.0f );
m_reflectivity = 50.2f;
m_transparency = 0.0f; // completely opaque
m_castShadows = true;
m_reflection = 0.0f;
m_absorbance = 1.0f;
m_refractionRayCount = m_defaultRefractionRayCount;
m_reflectionRayCount = m_defaultReflectionRayCount;
m_refractionRecursionCount = m_defaultRefractionRecursionCount;
m_reflectionRecursionCount = m_defaultFeflectionRecursionCount;
m_generator = nullptr;
}
MATERIAL::MATERIAL( const SFVEC3F& aAmbient, const SFVEC3F& aEmissive, const SFVEC3F& aSpecular,
float aShinness, float aTransparency, float aReflection )
{
wxASSERT( aReflection >= 0.0f );
wxASSERT( aReflection <= 1.0f );
wxASSERT( aTransparency >= 0.0f );
wxASSERT( aTransparency <= 1.0f );
wxASSERT( aShinness >= 0.0f );
wxASSERT( aShinness <= 180.0f );
m_ambientColor = aAmbient * SFVEC3F(AMBIENT_FACTOR);
m_emissiveColor = aEmissive;
m_specularColor = aSpecular;
m_reflectivity = aShinness;
m_transparency = glm::clamp( aTransparency, 0.0f, 1.0f );
m_absorbance = 1.0f;
m_reflection = aReflection;
m_castShadows = true;
m_refractionRayCount = m_defaultRefractionRayCount;
m_reflectionRayCount = m_defaultReflectionRayCount;
m_refractionRecursionCount = m_defaultRefractionRecursionCount;
m_reflectionRecursionCount = m_defaultFeflectionRecursionCount;
m_generator = nullptr;
}
void MATERIAL::Generate( SFVEC3F& aNormal, const RAY& aRay, const HITINFO& aHitInfo ) const
{
if( m_generator )
{
aNormal = aNormal + m_generator->Generate( aRay, aHitInfo );
aNormal = glm::normalize( aNormal );
}
}
// https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
SFVEC3F BLINN_PHONG_MATERIAL::Shade( const RAY& aRay, const HITINFO& aHitInfo, float NdotL,
const SFVEC3F& aDiffuseObjColor, const SFVEC3F& aDirToLight,
const SFVEC3F& aLightColor,
float aShadowAttenuationFactor ) const
{
wxASSERT( NdotL >= FLT_EPSILON );
// This is a hack to get some kind of fake ambient illumination
// There is no logic behind this, just pure artistic experimentation
if( aShadowAttenuationFactor > FLT_EPSILON )
{
// Calculate the diffuse light factoring in light color,
// power and the attenuation
const SFVEC3F diffuse = NdotL * aLightColor;
// Calculate the half vector between the light vector and the view vector.
const SFVEC3F H = glm::normalize( aDirToLight - aRay.m_Dir );
//Intensity of the specular light
const float NdotH = glm::dot( H, aHitInfo.m_HitNormal );
const float intensitySpecular = glm::pow( glm::max( NdotH, 0.0f ), m_reflectivity );
return m_ambientColor +
aShadowAttenuationFactor * ( diffuse * aDiffuseObjColor + SPECULAR_FACTOR *
aLightColor * intensitySpecular * m_specularColor );
}
return m_ambientColor;
}
MATERIAL_GENERATOR::MATERIAL_GENERATOR()
{
}
static PerlinNoise s_perlinNoise = PerlinNoise( 0 );
BOARD_NORMAL::BOARD_NORMAL( float aScale ) : MATERIAL_GENERATOR()
{
m_scale = ( 2.0f * glm::pi<float>() ) / aScale;
}
SFVEC3F BOARD_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const
{
const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
// http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJzaW4oc2luKHNpbih4KSoxLjkpKjEuNSkiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjEwMDAsIndpbmRvdyI6WyItMC45NjIxMDU3MDgwNzg1MjYyIiwiNy45NzE0MjYyNjc2MDE0MyIsIi0yLjUxNzYyMDM1MTQ4MjQ0OSIsIjIuOTc5OTM3Nzg3Mzk3NTMwMyJdLCJzaXplIjpbNjQ2LDM5Nl19XQ--
// Implement a texture as the "measling crazing blistering" method of FR4
const float x = glm::sin( glm::sin( hitPos.x ) * 1.5f ) * 0.06f;
const float y = glm::sin( glm::sin( hitPos.y ) * 1.5f ) * 0.03f;
const float z = -(x + y) + glm::sin( hitPos.z ) * 0.06f;
const float noise1 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 0.7f ) - 0.5f;
const float noise2 = s_perlinNoise.noise( hitPos.x * 0.7f, hitPos.y * 1.0f ) - 0.5f;
const float noise3 = s_perlinNoise.noise( hitPos.x * 0.3f, hitPos.z * 1.0f ) - 0.5f;
return ( SFVEC3F( noise1, noise2, -( noise3 ) ) * 0.3f + SFVEC3F( x, y, z ) );
}
COPPER_NORMAL::COPPER_NORMAL( float aScale, const MATERIAL_GENERATOR* aBoardNormalGenerator )
{
m_board_normal_generator = aBoardNormalGenerator;
m_scale = 1.0f / aScale;
}
SFVEC3F COPPER_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const
{
if( m_board_normal_generator )
{
const SFVEC3F boardNormal = m_board_normal_generator->Generate( aRay, aHitInfo );
SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise =
( s_perlinNoise.noise( hitPos.x + boardNormal.y + aRay.m_Origin.x * 0.2f,
hitPos.y + boardNormal.x ) - 0.5f ) * 2.0f;
float scratchPattern =
( s_perlinNoise.noise( noise + hitPos.x / 100.0f, hitPos.y * 100.0f ) - 0.5f );
const float x = scratchPattern * 0.14f;
const float y = (noise + noise * scratchPattern) * 0.14f;
return SFVEC3F( x, y, - ( x + y ) ) + boardNormal * 0.25f;
}
else
{
return SFVEC3F( 0.0f );
}
}
SOLDER_MASK_NORMAL::SOLDER_MASK_NORMAL( const MATERIAL_GENERATOR* aCopperNormalGenerator )
{
m_copper_normal_generator = aCopperNormalGenerator;
}
SFVEC3F SOLDER_MASK_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const
{
if( m_copper_normal_generator )
{
const SFVEC3F copperNormal = m_copper_normal_generator->Generate( aRay, aHitInfo );
return copperNormal * 0.05f;
}
else
{
return SFVEC3F( 0.0f );
}
}
SFVEC3F PLATED_COPPER_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const
{
SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise1 = ( s_perlinNoise.noise( hitPos.x, hitPos.y ) - 0.5f );
const float noise2 = ( s_perlinNoise.noise( hitPos.y, hitPos.x ) - 0.5f );
return SFVEC3F( noise1, noise2, 0.0f ) * 0.1f;
}
PLASTIC_NORMAL::PLASTIC_NORMAL( float aScale )
{
m_scale = 1.0f / aScale;
}
SFVEC3F PLASTIC_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const
{
const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise1 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 1.1f,
hitPos.z * 1.2f ) - 0.5f;
const float noise2 = s_perlinNoise.noise( hitPos.x * 1.3f, hitPos.y * 1.0f,
hitPos.z * 1.5f ) - 0.5f;
const float noise3 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 1.0f,
hitPos.z * 1.8f ) - 0.5f;
const float distanceReduction = 1.0f / ( aHitInfo.m_tHit + 0.5f );
return SFVEC3F( noise1, noise2, noise3 ) * SFVEC3F( distanceReduction );
}
PLASTIC_SHINE_NORMAL::PLASTIC_SHINE_NORMAL( float aScale )
{
m_scale = 1.0f / aScale;
}
SFVEC3F PLASTIC_SHINE_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const
{
const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise1 = s_perlinNoise.noise( hitPos.x * 0.01f, hitPos.y * 0.01f,
hitPos.z * 0.01f ) - 0.5f;
const float noise2 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 1.0f,
hitPos.z * 1.6f ) - 0.5f;
float noise3 = s_perlinNoise.noise( hitPos.x * 1.5f, hitPos.y * 1.5f,
hitPos.z * 1.0f ) - 0.5f;
noise3 = noise3 * noise3 * noise3;
return SFVEC3F( noise1, noise2, noise3 ) * SFVEC3F( 0.1f, 0.2f, 1.0f );
}
BRUSHED_METAL_NORMAL::BRUSHED_METAL_NORMAL( float aScale )
{
m_scale = 1.0f / aScale;
}
SFVEC3F BRUSHED_METAL_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const
{
const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise1 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 1.1f,
hitPos.z * 1.2f ) - 0.5f;
const float noise2 = s_perlinNoise.noise( hitPos.x * 1.3f, hitPos.y * 1.4f,
hitPos.z * 1.5f ) - 0.5f;
const float noise3 = s_perlinNoise.noise( hitPos.x * 0.1f, hitPos.y * 0.1f,
hitPos.z * 1.0f ) - 0.5f;
return SFVEC3F( noise1 * 0.15f + noise3 * 0.35f, noise2 * 0.25f, noise1 * noise2 * noise3 );
}
SILK_SCREEN_NORMAL::SILK_SCREEN_NORMAL( float aScale )
{
m_scale = 1.0f / aScale;
}
SFVEC3F SILK_SCREEN_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const
{
const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise1 = s_perlinNoise.noise( hitPos.x * 2.0f, hitPos.y * 2.0f, hitPos.z );
const float noise2 = s_perlinNoise.noise( hitPos.x * 0.6f, hitPos.y * 0.6f, hitPos.z );
SFVEC3F t = SFVEC3F( noise1, noise2, 0.0f ) - 0.5f;
SFVEC3F tt = t * t;
t = t * tt * tt * 100.0f; // this factor controls the intensity of the effect
t.z = 0.0f; // this will keep untouch the original z component of the normal
return t;
}