mirror of
https://gitlab.com/kicad/code/kicad.git
synced 2025-09-14 10:13:19 +02:00
Recommendation is to avoid using the year nomenclature as this information is already encoded in the git repo. Avoids needing to repeatly update. Also updates AUTHORS.txt from current repo with contributor names
336 lines
9.8 KiB
C++
336 lines
9.8 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
|
|
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
/**
|
|
* @file round_segment_2d.cpp
|
|
*/
|
|
|
|
#include "round_segment_2d.h"
|
|
#include <wx/debug.h>
|
|
|
|
|
|
ROUND_SEGMENT_2D::ROUND_SEGMENT_2D( const SFVEC2F& aStart, const SFVEC2F& aEnd, float aWidth,
|
|
const BOARD_ITEM& aBoardItem ) :
|
|
OBJECT_2D( OBJECT_2D_TYPE::ROUNDSEG, aBoardItem ),
|
|
m_segment( aStart, aEnd )
|
|
{
|
|
wxASSERT( aStart != aEnd );
|
|
|
|
m_radius = (aWidth / 2.0f);
|
|
m_radius_squared = m_radius * m_radius;
|
|
m_width = aWidth;
|
|
|
|
SFVEC2F leftRadiusOffset( -m_segment.m_Dir.y * m_radius, m_segment.m_Dir.x * m_radius );
|
|
|
|
m_leftStart = aStart + leftRadiusOffset;
|
|
m_leftEnd = aEnd + leftRadiusOffset;
|
|
m_leftEndMinusStart = m_leftEnd - m_leftStart;
|
|
m_leftDir = glm::normalize( m_leftEndMinusStart );
|
|
|
|
SFVEC2F rightRadiusOffset( -leftRadiusOffset.x, -leftRadiusOffset.y );
|
|
m_rightStart = aEnd + rightRadiusOffset;
|
|
m_rightEnd = aStart + rightRadiusOffset;
|
|
m_rightEndMinusStart = m_rightEnd - m_rightStart;
|
|
m_rightDir = glm::normalize( m_rightEndMinusStart );
|
|
|
|
m_bbox.Reset();
|
|
m_bbox.Set( aStart, aEnd );
|
|
m_bbox.Set( m_bbox.Min() - SFVEC2F( m_radius, m_radius ),
|
|
m_bbox.Max() + SFVEC2F( m_radius, m_radius ) );
|
|
m_bbox.ScaleNextUp();
|
|
m_centroid = m_bbox.GetCenter();
|
|
|
|
wxASSERT( m_bbox.IsInitialized() );
|
|
}
|
|
|
|
|
|
bool ROUND_SEGMENT_2D::Intersects( const BBOX_2D& aBBox ) const
|
|
{
|
|
if( !m_bbox.Intersects( aBBox ) )
|
|
return false;
|
|
|
|
if( ( aBBox.Max().x > m_bbox.Max().x ) && ( aBBox.Max().y > m_bbox.Max().y )
|
|
&& ( aBBox.Min().x < m_bbox.Min().x ) && ( aBBox.Min().y < m_bbox.Min().y ) )
|
|
return true;
|
|
|
|
SFVEC2F v[4];
|
|
|
|
v[0] = aBBox.Min();
|
|
v[1] = SFVEC2F( aBBox.Min().x, aBBox.Max().y );
|
|
v[2] = aBBox.Max();
|
|
v[3] = SFVEC2F( aBBox.Max().x, aBBox.Min().y );
|
|
|
|
// Test against the main rectangle segment
|
|
if( IntersectSegment( m_leftStart, m_leftEndMinusStart, v[0], v[1] - v[0] ) )
|
|
return true;
|
|
|
|
if( IntersectSegment( m_leftStart, m_leftEndMinusStart, v[1], v[2] - v[1] ) )
|
|
return true;
|
|
|
|
if( IntersectSegment( m_leftStart, m_leftEndMinusStart, v[2], v[3] - v[2] ) )
|
|
return true;
|
|
|
|
if( IntersectSegment( m_leftStart, m_leftEndMinusStart, v[3], v[0] - v[3] ) )
|
|
return true;
|
|
|
|
if( IntersectSegment( m_rightStart, m_rightEndMinusStart, v[0], v[1] - v[0] ) )
|
|
return true;
|
|
|
|
if( IntersectSegment( m_rightStart, m_rightEndMinusStart, v[1], v[2] - v[1] ) )
|
|
return true;
|
|
|
|
if( IntersectSegment( m_rightStart, m_rightEndMinusStart, v[2], v[3] - v[2] ) )
|
|
return true;
|
|
|
|
if( IntersectSegment( m_rightStart, m_rightEndMinusStart, v[3], v[0] - v[3] ) )
|
|
return true;
|
|
|
|
// Test the two circles
|
|
if( aBBox.Intersects( m_segment.m_Start, m_radius_squared ) )
|
|
return true;
|
|
|
|
if( aBBox.Intersects( m_segment.m_End, m_radius_squared ) )
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool ROUND_SEGMENT_2D::Overlaps( const BBOX_2D& aBBox ) const
|
|
{
|
|
// NOT IMPLEMENTED
|
|
return false;
|
|
}
|
|
|
|
|
|
bool ROUND_SEGMENT_2D::Intersect( const RAYSEG2D& aSegRay, float* aOutT, SFVEC2F* aNormalOut ) const
|
|
{
|
|
const bool start_is_inside = IsPointInside( aSegRay.m_Start );
|
|
const bool end_is_inside = IsPointInside( aSegRay.m_End );
|
|
|
|
// If segment if inside there are no hits
|
|
if( start_is_inside && end_is_inside )
|
|
return false;
|
|
|
|
bool hitted = false;
|
|
|
|
float closerHitT = FLT_MAX;
|
|
float farHitT = FLT_MAX;
|
|
|
|
SFVEC2F closerHitNormal;
|
|
SFVEC2F farHitNormal;
|
|
|
|
float leftSegT;
|
|
const bool leftSegmentHit =
|
|
aSegRay.IntersectSegment( m_leftStart, m_leftEndMinusStart, &leftSegT );
|
|
|
|
if( leftSegmentHit )
|
|
{
|
|
hitted = true;
|
|
closerHitT = leftSegT;
|
|
farHitT = leftSegT;
|
|
|
|
closerHitNormal = SFVEC2F( -m_leftDir.y, m_leftDir.x );
|
|
farHitNormal = SFVEC2F( -m_leftDir.y, m_leftDir.x );
|
|
}
|
|
|
|
float rightSegT;
|
|
const bool rightSegmentHit =
|
|
aSegRay.IntersectSegment( m_rightStart, m_rightEndMinusStart, &rightSegT );
|
|
|
|
if( rightSegmentHit )
|
|
{
|
|
if( !start_is_inside )
|
|
{
|
|
if( ( hitted == false ) || ( rightSegT < closerHitT ) )
|
|
{
|
|
closerHitT = rightSegT;
|
|
closerHitNormal = SFVEC2F( -m_rightDir.y, m_rightDir.x );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( ( hitted == false ) || ( rightSegT > farHitT ) )
|
|
{
|
|
farHitT = rightSegT;
|
|
farHitNormal = SFVEC2F( -m_rightDir.y, m_rightDir.x );
|
|
}
|
|
}
|
|
|
|
hitted = true;
|
|
}
|
|
|
|
float circleStart_T0;
|
|
float circleStart_T1;
|
|
SFVEC2F circleStart_N0;
|
|
SFVEC2F circleStart_N1;
|
|
|
|
const bool startCircleHit = aSegRay.IntersectCircle( m_segment.m_Start, m_radius,
|
|
&circleStart_T0, &circleStart_T1,
|
|
&circleStart_N0, &circleStart_N1 );
|
|
|
|
if( startCircleHit )
|
|
{
|
|
if( circleStart_T0 > 0.0f )
|
|
{
|
|
if( !start_is_inside )
|
|
{
|
|
if( ( hitted == false ) || ( circleStart_T0 < closerHitT ) )
|
|
{
|
|
closerHitT = circleStart_T0;
|
|
closerHitNormal = circleStart_N0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( ( hitted == false ) || ( circleStart_T1 > farHitT ) )
|
|
{
|
|
farHitT = circleStart_T1;
|
|
farHitNormal = circleStart_N1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// This can only happen if the ray starts inside
|
|
if( ( hitted == false ) || ( circleStart_T1 > farHitT ) )
|
|
{
|
|
farHitT = circleStart_T1;
|
|
farHitNormal = circleStart_N1;
|
|
}
|
|
}
|
|
|
|
hitted = true;
|
|
}
|
|
|
|
float circleEnd_T0;
|
|
float circleEnd_T1;
|
|
SFVEC2F circleEnd_N0;
|
|
SFVEC2F circleEnd_N1;
|
|
|
|
const bool rightCircleHit = aSegRay.IntersectCircle( m_segment.m_End, m_radius,
|
|
&circleEnd_T0, &circleEnd_T1,
|
|
&circleEnd_N0, &circleEnd_N1 );
|
|
if( rightCircleHit )
|
|
{
|
|
if( circleEnd_T0 > 0.0f )
|
|
{
|
|
if( !start_is_inside )
|
|
{
|
|
if( ( hitted == false ) || ( circleEnd_T0 < closerHitT ) )
|
|
{
|
|
closerHitT = circleEnd_T0;
|
|
closerHitNormal = circleEnd_N0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( ( hitted == false ) || ( circleEnd_T1 > farHitT ) )
|
|
{
|
|
farHitT = circleEnd_T1;
|
|
farHitNormal = circleEnd_N1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// This can only happen if the ray starts inside
|
|
if( ( hitted == false ) || ( circleEnd_T1 > farHitT ) )
|
|
{
|
|
farHitT = circleEnd_T1;
|
|
farHitNormal = circleEnd_N1;
|
|
}
|
|
}
|
|
|
|
hitted = true;
|
|
}
|
|
|
|
if( hitted )
|
|
{
|
|
if( !start_is_inside )
|
|
{
|
|
if( aOutT )
|
|
*aOutT = closerHitT;
|
|
//wxASSERT( (closerHitT > 0.0f) && (closerHitT <= 1.0f) );
|
|
|
|
if( aNormalOut )
|
|
*aNormalOut = closerHitNormal;
|
|
}
|
|
else
|
|
{
|
|
wxASSERT( (farHitT >= 0.0f) && (farHitT <= 1.0f) );
|
|
|
|
if( aOutT )
|
|
*aOutT = farHitT;
|
|
|
|
if( aNormalOut )
|
|
*aNormalOut = -farHitNormal; // the normal started inside, so invert it
|
|
}
|
|
}
|
|
|
|
return hitted;
|
|
}
|
|
|
|
|
|
INTERSECTION_RESULT ROUND_SEGMENT_2D::IsBBoxInside( const BBOX_2D &aBBox ) const
|
|
{
|
|
if( !m_bbox.Intersects( aBBox ) )
|
|
return INTERSECTION_RESULT::MISSES;
|
|
|
|
SFVEC2F v[4];
|
|
|
|
v[0] = aBBox.Min();
|
|
v[1] = aBBox.Max();
|
|
v[2] = SFVEC2F( aBBox.Min().x, aBBox.Max().y );
|
|
v[3] = SFVEC2F( aBBox.Max().x, aBBox.Min().y );
|
|
|
|
bool isInside[4];
|
|
|
|
isInside[0] = IsPointInside( v[0] );
|
|
isInside[1] = IsPointInside( v[1] );
|
|
isInside[2] = IsPointInside( v[2] );
|
|
isInside[3] = IsPointInside( v[3] );
|
|
|
|
// Check if all points are inside the circle
|
|
if( isInside[0] && isInside[1] && isInside[2] && isInside[3] )
|
|
return INTERSECTION_RESULT::FULL_INSIDE;
|
|
|
|
// Check if any point is inside the circle
|
|
if( isInside[0] || isInside[1] || isInside[2] || isInside[3] )
|
|
return INTERSECTION_RESULT::INTERSECTS;
|
|
|
|
return INTERSECTION_RESULT::MISSES;
|
|
}
|
|
|
|
|
|
bool ROUND_SEGMENT_2D::IsPointInside( const SFVEC2F& aPoint ) const
|
|
{
|
|
float dSquared = m_segment.DistanceToPointSquared( aPoint );
|
|
|
|
if( dSquared <= m_radius_squared )
|
|
return true;
|
|
|
|
return false;
|
|
}
|