/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Chris Pavlina * Copyright (C) 2014 Henner Zeller * Copyright (C) 2023 CERN * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include void LIB_TREE_NODE::AssignIntrinsicRanks( bool presorted ) { std::vector sort_buf; if( presorted ) { int max = m_Children.size() - 1; for( int i = 0; i <= max; ++i ) m_Children[i]->m_IntrinsicRank = max - i; } else { for( std::unique_ptr& child: m_Children ) sort_buf.push_back( child.get() ); std::sort( sort_buf.begin(), sort_buf.end(), []( LIB_TREE_NODE* a, LIB_TREE_NODE* b ) -> bool { return StrNumCmp( a->m_Name, b->m_Name, true ) > 0; } ); for( int i = 0; i < (int) sort_buf.size(); ++i ) sort_buf[i]->m_IntrinsicRank = i; } } void LIB_TREE_NODE::SortNodes( bool aUseScores ) { std::sort( m_Children.begin(), m_Children.end(), [&]( std::unique_ptr& a, std::unique_ptr& b ) { return Compare( *a, *b, aUseScores ); } ); for( std::unique_ptr& node: m_Children ) node->SortNodes( aUseScores ); } bool LIB_TREE_NODE::Compare( LIB_TREE_NODE const& aNode1, LIB_TREE_NODE const& aNode2, bool aUseScores ) { if( aNode1.m_Type != aNode2.m_Type ) return aNode1.m_Type < aNode2.m_Type; // Recently used sorts at top if( aNode1.m_IsRecentlyUsedGroup ) { if( aNode2.m_IsRecentlyUsedGroup ) { // Make sure "-- Recently Used" is always at the top // Start by checking the name of aNode2, because we want to satisfy the irreflexive // property of the strict weak ordering. if( aNode2.m_IsRecentlyUsedGroup ) return false; else if( aNode1.m_IsRecentlyUsedGroup ) return true; return aNode1.m_IntrinsicRank > aNode2.m_IntrinsicRank; } else { return true; } } else if( aNode2.m_Name.StartsWith( wxT( "-- " ) ) ) { return false; } // Pinned nodes go next if( aNode1.m_Pinned && !aNode2.m_Pinned ) return true; else if( aNode2.m_Pinned && !aNode1.m_Pinned ) return false; if( aUseScores && aNode1.m_Score != aNode2.m_Score ) return aNode1.m_Score > aNode2.m_Score; if( aNode1.m_IntrinsicRank != aNode2.m_IntrinsicRank ) return aNode1.m_IntrinsicRank > aNode2.m_IntrinsicRank; return reinterpret_cast( &aNode1 ) < reinterpret_cast( &aNode2 ); } LIB_TREE_NODE::LIB_TREE_NODE() : m_Parent( nullptr ), m_Type( TYPE::INVALID ), m_IntrinsicRank( 0 ), m_Score( 0 ), m_Pinned( false ), m_PinCount( 0 ), m_Unit( 0 ), m_IsRoot( false ), m_IsRecentlyUsedGroup( false ), m_IsAlreadyPlacedGroup( false ) {} LIB_TREE_NODE_UNIT::LIB_TREE_NODE_UNIT( LIB_TREE_NODE* aParent, LIB_TREE_ITEM* aItem, int aUnit ) { static void* locale = nullptr; static wxString namePrefix; // Fetching translations can take a surprising amount of time when loading libraries, // so only do it when necessary. if( Pgm().GetLocale() != locale ) { namePrefix = _( "Unit" ); locale = Pgm().GetLocale(); } m_Parent = aParent; m_Type = TYPE::UNIT; m_Unit = aUnit; m_LibId = aParent->m_LibId; m_Name = namePrefix + " " + aItem->GetUnitReference( aUnit ); if( aItem->HasUnitDisplayName( aUnit ) ) m_Desc = aItem->GetUnitDisplayName( aUnit ); else m_Desc = wxEmptyString; m_IntrinsicRank = -aUnit; } void LIB_TREE_NODE_UNIT::UpdateScore( const std::vector>& aMatchers, std::function* aFilter ) { m_Score = 1; // aMatchers test results are inherited from parent if( !aMatchers.empty() ) m_Score = m_Parent->m_Score; if( aFilter && !(*aFilter)(*this) ) m_Score = 0; } LIB_TREE_NODE_ITEM::LIB_TREE_NODE_ITEM( LIB_TREE_NODE* aParent, LIB_TREE_ITEM* aItem ) { m_Type = TYPE::ITEM; m_Parent = aParent; m_LibId.SetLibNickname( aItem->GetLibNickname() ); m_LibId.SetLibItemName( aItem->GetName() ); m_Name = aItem->GetName(); m_Desc = aItem->GetDesc(); m_Footprint = aItem->GetFootprint(); m_PinCount = aItem->GetPinCount(); aItem->GetChooserFields( m_Fields ); m_SearchTerms = aItem->GetSearchTerms(); m_IsRoot = aItem->IsRoot(); if( aItem->GetSubUnitCount() > 1 ) { for( int u = 1; u <= aItem->GetSubUnitCount(); ++u ) AddUnit( aItem, u ); } } LIB_TREE_NODE_UNIT& LIB_TREE_NODE_ITEM::AddUnit( LIB_TREE_ITEM* aItem, int aUnit ) { LIB_TREE_NODE_UNIT* unit = new LIB_TREE_NODE_UNIT( this, aItem, aUnit ); m_Children.push_back( std::unique_ptr( unit ) ); return *unit; } void LIB_TREE_NODE_ITEM::Update( LIB_TREE_ITEM* aItem ) { m_LibId.SetLibNickname( aItem->GetLIB_ID().GetLibNickname() ); m_LibId.SetLibItemName( aItem->GetName() ); m_Name = aItem->GetName(); m_Desc = aItem->GetDesc(); aItem->GetChooserFields( m_Fields ); m_SearchTerms = aItem->GetSearchTerms(); m_IsRoot = aItem->IsRoot(); m_Children.clear(); for( int u = 1; u <= aItem->GetSubUnitCount(); ++u ) AddUnit( aItem, u ); } void LIB_TREE_NODE_ITEM::UpdateScore( const std::vector>& aMatchers, std::function* aFilter ) { m_Score = 1; for( const std::unique_ptr& matcher : aMatchers ) { int score = matcher->ScoreTerms( m_SearchTerms ); if( score == 0 ) { m_Score = 0; break; } m_Score += score; } if( aFilter && !(*aFilter)(*this) ) m_Score = 0; for( std::unique_ptr& child: m_Children ) child->UpdateScore( aMatchers, aFilter ); } LIB_TREE_NODE_LIBRARY::LIB_TREE_NODE_LIBRARY( LIB_TREE_NODE* aParent, wxString const& aName, wxString const& aDesc ) { m_Type = TYPE::LIBRARY; m_Name = aName; m_Desc = aDesc; m_Parent = aParent; m_LibId.SetLibNickname( aName ); m_SearchTerms.emplace_back( SEARCH_TERM( aName, 8 ) ); } LIB_TREE_NODE_ITEM& LIB_TREE_NODE_LIBRARY::AddItem( LIB_TREE_ITEM* aItem ) { LIB_TREE_NODE_ITEM* item = new LIB_TREE_NODE_ITEM( this, aItem ); m_Children.push_back( std::unique_ptr( item ) ); return *item; } void LIB_TREE_NODE_LIBRARY::UpdateScore( const std::vector>& aMatchers, std::function* aFilter ) { if( m_Children.empty() ) { m_Score = 1; for( const std::unique_ptr& matcher : aMatchers ) { int score = matcher->ScoreTerms( m_SearchTerms ); if( score == 0 ) { m_Score = 0; break; } m_Score += score; } } else { m_Score = 0; for( std::unique_ptr& child: m_Children ) { child->UpdateScore( aMatchers, aFilter ); m_Score = std::max( m_Score, child->m_Score ); } } } LIB_TREE_NODE_ROOT::LIB_TREE_NODE_ROOT() { m_Type = TYPE::ROOT; } LIB_TREE_NODE_LIBRARY& LIB_TREE_NODE_ROOT::AddLib( wxString const& aName, wxString const& aDesc ) { LIB_TREE_NODE_LIBRARY* lib = new LIB_TREE_NODE_LIBRARY( this, aName, aDesc ); m_Children.push_back( std::unique_ptr( lib ) ); return *lib; } void LIB_TREE_NODE_ROOT::RemoveGroup( bool aRecentlyUsedGroup, bool aAlreadyPlacedGroup ) { m_Children.erase( std::remove_if( m_Children.begin(), m_Children.end(), [&]( std::unique_ptr& aNode ) { if( aRecentlyUsedGroup && aNode->m_IsRecentlyUsedGroup ) return true; if( aAlreadyPlacedGroup && aNode->m_IsAlreadyPlacedGroup ) return true; return false; } ), m_Children.end() ); } void LIB_TREE_NODE_ROOT::Clear() { m_Children.clear(); } void LIB_TREE_NODE_ROOT::UpdateScore( const std::vector>& aMatchers, std::function* aFilter ) { for( std::unique_ptr& child: m_Children ) child->UpdateScore( aMatchers, aFilter ); }