/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2022 Mikolaj Wielgus * Copyright (C) 2022 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * https://www.gnu.org/licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include using DEVICE_TYPE = SIM_MODEL::DEVICE_TYPE; using TYPE = SIM_MODEL::TYPE; namespace SIM_MODEL_PARSER { using namespace SIM_VALUE_PARSER; struct spaces : plus {}; struct pinNumber : sor> {}; struct pinSequence : seq, opt>, opt> {}; struct pinSequenceGrammar : must {}; template struct pinSequenceSelector : std::false_type {}; template <> struct pinSequenceSelector : std::true_type {}; struct param : plus {}; template struct paramValuePair : seq, one<'='>, opt, number> {}; template struct paramValuePairs : seq, opt, star>>, opt> {}; template struct paramValuePairsGrammar : must, eof> {}; template struct paramValuePairsSelector : std::false_type {}; template <> struct paramValuePairsSelector : std::true_type {}; template <> struct paramValuePairsSelector> : std::true_type {}; template <> struct paramValuePairsSelector> : std::true_type {}; template <> struct paramValuePairsSelector> : std::true_type {}; template <> struct paramValuePairsSelector> : std::true_type {}; } SIM_MODEL::DEVICE_INFO SIM_MODEL::DeviceTypeInfo( DEVICE_TYPE aDeviceType ) { switch( aDeviceType ) { case DEVICE_TYPE::NONE: return { "", "" }; case DEVICE_TYPE::RESISTOR: return { "RESISTOR", "Resistor" }; case DEVICE_TYPE::CAPACITOR: return { "CAPACITOR", "Capacitor" }; case DEVICE_TYPE::INDUCTOR: return { "INDUCTOR", "Inductor" }; case DEVICE_TYPE::TLINE: return { "TLINE", "Transmission Line" }; case DEVICE_TYPE::SWITCH: return { "SWITCH", "Switch" }; case DEVICE_TYPE::DIODE: return { "DIODE", "Diode" }; case DEVICE_TYPE::NPN: return { "NPN", "NPN BJT" }; case DEVICE_TYPE::PNP: return { "PNP", "PNP BJT" }; case DEVICE_TYPE::NJF: return { "NJF", "N-Channel JFET" }; case DEVICE_TYPE::PJF: return { "PJF", "P-Channel JFET" }; case DEVICE_TYPE::NMOS: return { "NMOS", "N-Channel MOSFET" }; case DEVICE_TYPE::PMOS: return { "PMOS", "P-Channel MOSFET" }; case DEVICE_TYPE::NMES: return { "NMES", "N-Channel MESFET" }; case DEVICE_TYPE::PMES: return { "PMES", "P-Channel MESFET" }; case DEVICE_TYPE::VSOURCE: return { "VSOURCE", "Voltage Source" }; case DEVICE_TYPE::ISOURCE: return { "ISOURCE", "Current Source" }; case DEVICE_TYPE::SUBCIRCUIT: return { "SUBCIRCUIT", "Subcircuit" }; case DEVICE_TYPE::CODEMODEL: return { "CODEMODEL", "Code Model" }; case DEVICE_TYPE::RAWSPICE: return { "RAWSPICE", "Raw Spice Element" }; case DEVICE_TYPE::_ENUM_END: break; } wxFAIL; return {}; } SIM_MODEL::INFO SIM_MODEL::TypeInfo( TYPE aType ) { switch( aType ) { case TYPE::NONE: return { DEVICE_TYPE::NONE, "", "" }; case TYPE::RESISTOR_IDEAL: return { DEVICE_TYPE::RESISTOR, "IDEAL", "Ideal" }; case TYPE::RESISTOR_ADVANCED: return { DEVICE_TYPE::RESISTOR, "ADVANCED", "Advanced" }; case TYPE::RESISTOR_BEHAVIORAL: return { DEVICE_TYPE::RESISTOR, "BEHAVIORAL", "Behavioral" }; case TYPE::CAPACITOR_IDEAL: return { DEVICE_TYPE::CAPACITOR, "IDEAL", "Ideal" }; case TYPE::CAPACITOR_ADVANCED: return { DEVICE_TYPE::CAPACITOR, "ADVANCED", "Advanced" }; case TYPE::CAPACITOR_BEHAVIORAL: return { DEVICE_TYPE::CAPACITOR, "BEHAVIORAL", "Behavioral" }; case TYPE::INDUCTOR_IDEAL: return { DEVICE_TYPE::INDUCTOR, "IDEAL", "Ideal" }; case TYPE::INDUCTOR_ADVANCED: return { DEVICE_TYPE::INDUCTOR, "ADVANCED", "Advanced" }; case TYPE::INDUCTOR_BEHAVIORAL: return { DEVICE_TYPE::INDUCTOR, "BEHAVIORAL", "Behavioral" }; case TYPE::TLINE_LOSSY: return { DEVICE_TYPE::TLINE, "LOSSY", "Lossy" }; case TYPE::TLINE_LOSSLESS: return { DEVICE_TYPE::TLINE, "LOSSLESS", "Lossless" }; case TYPE::TLINE_UNIFORM_RC: return { DEVICE_TYPE::TLINE, "UNIFORM_RC", "Uniform RC" }; case TYPE::TLINE_KSPICE: return { DEVICE_TYPE::TLINE, "KSPICE", "KSPICE" }; case TYPE::SWITCH_VCTRL: return { DEVICE_TYPE::SWITCH, "VCTRL", "Voltage-controlled" }; case TYPE::SWITCH_ICTRL: return { DEVICE_TYPE::SWITCH, "ICTRL", "Current-controlled" }; case TYPE::DIODE: return { DEVICE_TYPE::DIODE, "", "" }; case TYPE::NPN_GUMMEL_POON: return { DEVICE_TYPE::NPN, "GUMMEL_POON", "Gummel-Poon" }; case TYPE::PNP_GUMMEL_POON: return { DEVICE_TYPE::PNP, "GUMMEL_POON", "Gummel-Poon" }; case TYPE::NPN_VBIC: return { DEVICE_TYPE::NPN, "VBIC", "VBIC" }; case TYPE::PNP_VBIC: return { DEVICE_TYPE::PNP, "VBIC", "VBIC" }; //case TYPE::BJT_MEXTRAM: return {}; case TYPE::NPN_HICUM_L2: return { DEVICE_TYPE::NPN, "HICUM_L2", "HICUM Level 2" }; case TYPE::PNP_HICUM_L2: return { DEVICE_TYPE::PNP, "HICUM_L2", "HICUM Level 2" }; //case TYPE::BJT_HICUM_L0: return {}; case TYPE::NJF_SHICHMAN_HODGES: return { DEVICE_TYPE::NJF, "SHICHMAN_HODGES", "Shichman-Hodges" }; case TYPE::PJF_SHICHMAN_HODGES: return { DEVICE_TYPE::PJF, "SHICHMAN_HODGES", "Shichman-Hodges" }; case TYPE::NJF_PARKER_SKELLERN: return { DEVICE_TYPE::NJF, "PARKER_SKELLERN", "Parker-Skellern" }; case TYPE::PJF_PARKER_SKELLERN: return { DEVICE_TYPE::PJF, "PARKER_SKELLERN", "Parker-Skellern" }; case TYPE::NMES_STATZ: return { DEVICE_TYPE::NMES, "STATZ", "Statz" }; case TYPE::PMES_STATZ: return { DEVICE_TYPE::PMES, "STATZ", "Statz" }; case TYPE::NMES_YTTERDAL: return { DEVICE_TYPE::NMES, "YTTERDAL", "Ytterdal" }; case TYPE::PMES_YTTERDAL: return { DEVICE_TYPE::PMES, "YTTERDAL", "Ytterdal" }; case TYPE::NMES_HFET1: return { DEVICE_TYPE::NMES, "HFET1", "HFET1" }; case TYPE::PMES_HFET1: return { DEVICE_TYPE::PMES, "HFET1", "HFET1" }; case TYPE::PMES_HFET2: return { DEVICE_TYPE::NMES, "HFET2", "HFET2" }; case TYPE::NMES_HFET2: return { DEVICE_TYPE::PMES, "HFET2", "HFET2" }; case TYPE::NMOS_MOS1: return { DEVICE_TYPE::NMOS, "MOS1", "Classical quadratic (MOS1)" }; case TYPE::PMOS_MOS1: return { DEVICE_TYPE::PMOS, "MOS1", "Classical quadratic (MOS1)" }; case TYPE::NMOS_MOS2: return { DEVICE_TYPE::NMOS, "MOS2", "Grove-Frohman (MOS2)" }; case TYPE::PMOS_MOS2: return { DEVICE_TYPE::PMOS, "MOS2", "Grove-Frohman (MOS2)" }; case TYPE::NMOS_MOS3: return { DEVICE_TYPE::NMOS, "MOS3", "MOS3" }; case TYPE::PMOS_MOS3: return { DEVICE_TYPE::PMOS, "MOS3", "MOS3" }; case TYPE::NMOS_BSIM1: return { DEVICE_TYPE::NMOS, "BSIM1", "BSIM1" }; case TYPE::PMOS_BSIM1: return { DEVICE_TYPE::PMOS, "BSIM1", "BSIM1" }; case TYPE::NMOS_BSIM2: return { DEVICE_TYPE::NMOS, "BSIM2", "BSIM2" }; case TYPE::PMOS_BSIM2: return { DEVICE_TYPE::PMOS, "BSIM2", "BSIM2" }; case TYPE::NMOS_MOS6: return { DEVICE_TYPE::NMOS, "MOS6", "MOS6" }; case TYPE::PMOS_MOS6: return { DEVICE_TYPE::PMOS, "MOS6", "MOS6" }; case TYPE::NMOS_BSIM3: return { DEVICE_TYPE::NMOS, "BSIM3", "BSIM3" }; case TYPE::PMOS_BSIM3: return { DEVICE_TYPE::PMOS, "BSIM3", "BSIM3" }; case TYPE::NMOS_MOS9: return { DEVICE_TYPE::NMOS, "MOS9", "MOS9" }; case TYPE::PMOS_MOS9: return { DEVICE_TYPE::PMOS, "MOS9", "MOS9" }; case TYPE::NMOS_B4SOI: return { DEVICE_TYPE::NMOS, "B4SOI", "BSIM4 SOI (B4SOI)" }; case TYPE::PMOS_B4SOI: return { DEVICE_TYPE::PMOS, "B4SOI", "BSIM4 SOI (B4SOI)" }; case TYPE::NMOS_BSIM4: return { DEVICE_TYPE::NMOS, "BSIM4", "BSIM4" }; case TYPE::PMOS_BSIM4: return { DEVICE_TYPE::PMOS, "BSIM4", "BSIM4" }; //case TYPE::NMOS_EKV2_6: return {}; //case TYPE::PMOS_EKV2_6: return {}; //case TYPE::NMOS_PSP: return {}; //case TYPE::PMOS_PSP: return {}; case TYPE::NMOS_B3SOIFD: return { DEVICE_TYPE::NMOS, "B3SOIFD", "B3SOIFD (BSIM3 FD-SOI)" }; case TYPE::PMOS_B3SOIFD: return { DEVICE_TYPE::PMOS, "B3SOIFD", "B3SOIFD (BSIM3 FD-SOI)" }; case TYPE::NMOS_B3SOIDD: return { DEVICE_TYPE::NMOS, "B3SOIDD", "B3SOIDD (BSIM3 SOI)" }; case TYPE::PMOS_B3SOIDD: return { DEVICE_TYPE::PMOS, "B3SOIDD", "B3SOIDD (BSIM3 SOI)" }; case TYPE::NMOS_B3SOIPD: return { DEVICE_TYPE::NMOS, "B3SOIPD", "B3SOIPD (BSIM3 PD-SOI)" }; case TYPE::PMOS_B3SOIPD: return { DEVICE_TYPE::PMOS, "B3SOIPD", "B3SOIPD (BSIM3 PD-SOI)" }; //case TYPE::NMOS_STAG: return {}; //case TYPE::PMOS_STAG: return {}; case TYPE::NMOS_HISIM2: return { DEVICE_TYPE::NMOS, "HISIM2", "HiSIM2" }; case TYPE::PMOS_HISIM2: return { DEVICE_TYPE::PMOS, "HISIM2", "HiSIM2" }; case TYPE::NMOS_HISIM_HV1: return { DEVICE_TYPE::NMOS, "HISIM_HV1", "HiSIM_HV1" }; case TYPE::PMOS_HISIM_HV1: return { DEVICE_TYPE::PMOS, "HISIM_HV1", "HiSIM_HV1" }; case TYPE::NMOS_HISIM_HV2: return { DEVICE_TYPE::NMOS, "HISIM_HV2", "HiSIM_HV2" }; case TYPE::PMOS_HISIM_HV2: return { DEVICE_TYPE::PMOS, "HISIM_HV2", "HiSIM_HV2" }; case TYPE::VSOURCE_PULSE: return { DEVICE_TYPE::VSOURCE, "PULSE", "Pulse" }; case TYPE::VSOURCE_SIN: return { DEVICE_TYPE::VSOURCE, "SINCE", "Sine" }; case TYPE::VSOURCE_EXP: return { DEVICE_TYPE::VSOURCE, "EXP", "Exponential" }; case TYPE::VSOURCE_SFAM: return { DEVICE_TYPE::VSOURCE, "SFAM", "Single-frequency AM" }; case TYPE::VSOURCE_SFFM: return { DEVICE_TYPE::VSOURCE, "SFFM", "Single-frequency FM" }; case TYPE::VSOURCE_PWL: return { DEVICE_TYPE::VSOURCE, "PWL", "Piecewise linear" }; case TYPE::VSOURCE_WHITE_NOISE: return { DEVICE_TYPE::VSOURCE, "WHITE_NOISE", "White Noise" }; case TYPE::VSOURCE_PINK_NOISE: return { DEVICE_TYPE::VSOURCE, "PINK_NOISE", "Pink Noise (1/f)" }; case TYPE::VSOURCE_BURST_NOISE: return { DEVICE_TYPE::VSOURCE, "BURST_NOISE", "Burst Noise" }; case TYPE::VSOURCE_RANDOM_UNIFORM: return { DEVICE_TYPE::VSOURCE, "RANDOM_UNIFORM", "Random uniform" }; case TYPE::VSOURCE_RANDOM_NORMAL: return { DEVICE_TYPE::VSOURCE, "RANDOM_NORMAL", "Random normal" }; case TYPE::VSOURCE_RANDOM_EXP: return { DEVICE_TYPE::VSOURCE, "RANDOM_EXP", "Random exponential" }; case TYPE::VSOURCE_RANDOM_POISSON: return { DEVICE_TYPE::VSOURCE, "RANDOM_POISSON", "Random Poisson" }; case TYPE::VSOURCE_BEHAVIORAL: return { DEVICE_TYPE::VSOURCE, "BEHAVIORAL", "Behavioral" }; case TYPE::ISOURCE_PULSE: return { DEVICE_TYPE::ISOURCE, "PULSE", "Pulse" }; case TYPE::ISOURCE_SIN: return { DEVICE_TYPE::ISOURCE, "SINCE", "Sine" }; case TYPE::ISOURCE_EXP: return { DEVICE_TYPE::ISOURCE, "EXP", "Exponential" }; case TYPE::ISOURCE_SFAM: return { DEVICE_TYPE::ISOURCE, "SFAM", "Single-frequency AM" }; case TYPE::ISOURCE_SFFM: return { DEVICE_TYPE::ISOURCE, "SFFM", "Single-frequency FM" }; case TYPE::ISOURCE_PWL: return { DEVICE_TYPE::ISOURCE, "PWL", "Piecewise linear" }; case TYPE::ISOURCE_WHITE_NOISE: return { DEVICE_TYPE::ISOURCE, "WHITE_NOISE", "White Noise" }; case TYPE::ISOURCE_PINK_NOISE: return { DEVICE_TYPE::ISOURCE, "PINK_NOISE", "Pink Noise (1/f)" }; case TYPE::ISOURCE_BURST_NOISE: return { DEVICE_TYPE::ISOURCE, "BURST_NOISE", "Burst Noise" }; case TYPE::ISOURCE_RANDOM_UNIFORM: return { DEVICE_TYPE::ISOURCE, "RANDOM_UNIFORM", "Random uniform" }; case TYPE::ISOURCE_RANDOM_NORMAL: return { DEVICE_TYPE::ISOURCE, "RANDOM_NORMAL", "Random normal" }; case TYPE::ISOURCE_RANDOM_EXP: return { DEVICE_TYPE::ISOURCE, "RANDOM_EXP", "Random exponential" }; case TYPE::ISOURCE_RANDOM_POISSON: return { DEVICE_TYPE::ISOURCE, "RANDOM_POISSON", "Random Poisson" }; case TYPE::ISOURCE_BEHAVIORAL: return { DEVICE_TYPE::ISOURCE, "BEHAVIORAL", "Behavioral" }; case TYPE::SUBCIRCUIT: return { DEVICE_TYPE::SUBCIRCUIT, "", "" }; case TYPE::CODEMODEL: return { DEVICE_TYPE::CODEMODEL, "", "" }; case TYPE::RAWSPICE: return { DEVICE_TYPE::RAWSPICE, "", "" }; case TYPE::_ENUM_END: break; } wxFAIL; return { }; } template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector& aFields ); template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector& aFields ); template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector& aFields ) { wxString typeFieldValue = getFieldValue( &aFields, TYPE_FIELD ); wxString deviceTypeFieldValue = getFieldValue( &aFields, DEVICE_TYPE_FIELD ); bool typeFound = false; for( TYPE type : TYPE_ITERATOR() ) { if( typeFieldValue == TypeInfo( type ).fieldValue ) { typeFound = true; if( deviceTypeFieldValue == DeviceTypeInfo( TypeInfo( type ).deviceType ).fieldValue ) return type; } } if( !typeFound ) throw KI_PARAM_ERROR( wxString::Format( _( "Invalid '%s' field value: '%s'" ), TYPE_FIELD, typeFieldValue ) ); throw KI_PARAM_ERROR( wxString::Format( _( "Invalid '%s' field value: '%s'" ), DEVICE_TYPE_FIELD, deviceTypeFieldValue ) ); } template std::unique_ptr SIM_MODEL::Create( int symbolPinCount, const std::vector& aFields ); template std::unique_ptr SIM_MODEL::Create( int symbolPinCount, const std::vector& aFields ); template std::unique_ptr SIM_MODEL::Create( int symbolPinCount, const std::vector& aFields ) { return SIM_MODEL::Create( ReadTypeFromFields( aFields ), symbolPinCount, &aFields ); } template std::unique_ptr SIM_MODEL::Create( TYPE aType, int symbolPinCount, const std::vector* aFields ); template std::unique_ptr SIM_MODEL::Create( TYPE aType, int symbolPinCount, const std::vector* aFields ); template std::unique_ptr SIM_MODEL::Create( TYPE aType, int symbolPinCount, const std::vector* aFields ); template std::unique_ptr SIM_MODEL::Create( TYPE aType, int symbolPinCount, const std::vector* aFields ) { switch( aType ) { case TYPE::RESISTOR_IDEAL: case TYPE::CAPACITOR_IDEAL: case TYPE::INDUCTOR_IDEAL: return std::make_unique( aType, symbolPinCount, aFields ); case TYPE::RESISTOR_BEHAVIORAL: case TYPE::CAPACITOR_BEHAVIORAL: case TYPE::INDUCTOR_BEHAVIORAL: case TYPE::VSOURCE_BEHAVIORAL: case TYPE::ISOURCE_BEHAVIORAL: return std::make_unique( aType, symbolPinCount, aFields ); case TYPE::VSOURCE_PULSE: case TYPE::ISOURCE_PULSE: case TYPE::VSOURCE_SIN: case TYPE::ISOURCE_SIN: case TYPE::VSOURCE_EXP: case TYPE::ISOURCE_EXP: case TYPE::VSOURCE_SFAM: case TYPE::ISOURCE_SFAM: case TYPE::VSOURCE_SFFM: case TYPE::ISOURCE_SFFM: case TYPE::VSOURCE_PWL: case TYPE::ISOURCE_PWL: case TYPE::VSOURCE_WHITE_NOISE: case TYPE::ISOURCE_WHITE_NOISE: case TYPE::VSOURCE_PINK_NOISE: case TYPE::ISOURCE_PINK_NOISE: case TYPE::VSOURCE_BURST_NOISE: case TYPE::ISOURCE_BURST_NOISE: case TYPE::VSOURCE_RANDOM_UNIFORM: case TYPE::ISOURCE_RANDOM_UNIFORM: case TYPE::VSOURCE_RANDOM_NORMAL: case TYPE::ISOURCE_RANDOM_NORMAL: case TYPE::VSOURCE_RANDOM_EXP: case TYPE::ISOURCE_RANDOM_EXP: case TYPE::VSOURCE_RANDOM_POISSON: case TYPE::ISOURCE_RANDOM_POISSON: return std::make_unique( aType, symbolPinCount, aFields ); case TYPE::SUBCIRCUIT: return std::make_unique( aType, symbolPinCount, aFields ); case TYPE::CODEMODEL: return std::make_unique( aType, symbolPinCount, aFields ); case TYPE::RAWSPICE: return std::make_unique( aType, symbolPinCount, aFields ); default: return std::make_unique( aType, symbolPinCount, aFields ); } } SIM_MODEL::SIM_MODEL( TYPE aType ) : m_type( aType ) { } template <> void SIM_MODEL::ReadDataFields( int symbolPinCount, const std::vector* aFields ) { doReadDataFields( symbolPinCount, aFields ); } template <> void SIM_MODEL::ReadDataFields( int symbolPinCount, const std::vector* aFields ) { ReadDataSchFields( symbolPinCount, aFields ); } template <> void SIM_MODEL::ReadDataFields( int symbolPinCount, const std::vector* aFields ) { ReadDataLibFields( symbolPinCount, aFields ); } void SIM_MODEL::ReadDataSchFields( int symbolPinCount, const std::vector* aFields ) { doReadDataFields( symbolPinCount, aFields ); } void SIM_MODEL::ReadDataLibFields( int symbolPinCount, const std::vector* aFields ) { doReadDataFields( symbolPinCount, aFields ); } template <> void SIM_MODEL::WriteFields( std::vector& aFields ) { WriteDataSchFields( aFields ); } template <> void SIM_MODEL::WriteFields( std::vector& aFields ) { WriteDataLibFields( aFields ); } void SIM_MODEL::WriteDataSchFields( std::vector& aFields ) { doWriteFields( aFields ); } void SIM_MODEL::WriteDataLibFields( std::vector& aFields ) { doWriteFields( aFields ); } template void SIM_MODEL::doReadDataFields( int symbolPinCount, const std::vector* aFields ) { SetFile( getFieldValue( aFields, FILE_FIELD ) ); parsePinSequence( symbolPinCount, getFieldValue( aFields, PIN_SEQUENCE_FIELD ) ); parseParamValuePairs( getFieldValue( aFields, PARAMS_FIELD ) ); } template void SIM_MODEL::doWriteFields( std::vector& aFields ) { setFieldValue( aFields, DEVICE_TYPE_FIELD, DeviceTypeInfo( TypeInfo( m_type ).deviceType ).fieldValue ); setFieldValue( aFields, TYPE_FIELD, TypeInfo( m_type ).fieldValue ); setFieldValue( aFields, FILE_FIELD, GetFile() ); setFieldValue( aFields, PIN_SEQUENCE_FIELD, generatePinSequence() ); setFieldValue( aFields, PARAMS_FIELD, generateParamValuePairs() ); } wxString SIM_MODEL::generatePinSequence() { wxString result = ""; bool isFirst = true; for( const PIN& modelPin : Pins() ) { if( isFirst ) isFirst = false; else result << " "; if( modelPin.symbolPinNumber == PIN::NOT_CONNECTED ) result << "X"; else result << modelPin.symbolPinNumber; } return result; } void SIM_MODEL::parsePinSequence( int symbolPinCount, const wxString& aPinSequence ) { // Default pin sequence: model pins are the same as symbol pins. // Excess model pins are set as Not Connected. for( int i = 0; i < static_cast( getPinNames().size() ); ++i ) { if( i < symbolPinCount ) Pins().push_back( { i + 1, getPinNames().at( i ) } ); else Pins().push_back( { PIN::NOT_CONNECTED, getPinNames().at( i ) } ); } if( aPinSequence.IsEmpty() ) return; LOCALE_IO toggle; tao::pegtl::string_input<> in( aPinSequence.ToStdString(), "from_input" ); std::unique_ptr root; try { root = tao::pegtl::parse_tree::parse( in ); } catch( tao::pegtl::parse_error& e ) { throw KI_PARAM_ERROR( wxString::Format( _( "Failed to parse model pin sequence: %s" ), e.what() ) ); } wxASSERT( root ); if( root->children.size() != Pins().size() ) throw KI_PARAM_ERROR( wxString::Format( _( "The model pin sequence has a different number of values (%d) " "than the number of model pins (%d)" ) ) ); for( unsigned int i = 0; i < root->children.size(); ++i ) { if( root->children.at( i )->string() == "X" ) Pins().at( i ).symbolPinNumber = PIN::NOT_CONNECTED; else Pins().at( i ).symbolPinNumber = std::stoi( root->children.at( i )->string() ); } } wxString SIM_MODEL::generateParamValuePairs() { bool isFirst = true; wxString result = ""; for( const PARAM& param : m_params) { wxString valueStr = param.value->ToString(); if( valueStr.IsEmpty() ) continue; if( isFirst ) isFirst = false; else result << " "; result << param.info.name; result << "="; result << param.value->ToString(); } return result; } void SIM_MODEL::parseParamValuePairs( const wxString& aParamValuePairs ) { LOCALE_IO toggle; tao::pegtl::string_input<> in( aParamValuePairs.ToStdString(), "from_input" ); std::unique_ptr root; try { root = tao::pegtl::parse_tree::parse< SIM_MODEL_PARSER::paramValuePairsGrammar, SIM_MODEL_PARSER::paramValuePairsSelector> ( in ); } catch( tao::pegtl::parse_error& e ) { throw KI_PARAM_ERROR( wxString::Format( _( "Failed to parse model parameters: %s" ), e.what() ) ); } wxASSERT( root ); wxString paramName = ""; for( const auto& node : root->children ) { if( node->is_type() ) paramName = node->string(); else if( node->is_type>() ) { wxASSERT( paramName != "" ); auto it = std::find_if( Params().begin(), Params().end(), [paramName]( const PARAM& param ) { return param.info.name == paramName; } ); if( it == Params().end() ) throw KI_PARAM_ERROR( wxString::Format( _( "Unknown parameter '%s'" ), paramName ) ); try { it->value->FromString( wxString( node->string() ) ); } catch( KI_PARAM_ERROR& e ) { Params().clear(); throw KI_PARAM_ERROR( wxString::Format( _( "Invalid '%s' parameter value: %s" ), paramName, node->string() ) ); } } else wxFAIL; } } template wxString SIM_MODEL::getFieldValue( const std::vector* aFields, const wxString& aFieldName ) { static_assert( std::is_same::value || std::is_same::value ); if( !aFields ) return wxEmptyString; // Should not happen, T=void specialization should be called instead. auto fieldIt = std::find_if( aFields->begin(), aFields->end(), [&]( const T& f ) { return f.GetName() == aFieldName; } ); if( fieldIt != aFields->end() ) return fieldIt->GetText(); return wxEmptyString; } // This specialization is used when no fields are passed. template <> wxString SIM_MODEL::getFieldValue( const std::vector* aFields, const wxString& aFieldName ) { return wxEmptyString; } template void SIM_MODEL::setFieldValue( std::vector& aFields, const wxString& aFieldName, const wxString& aValue ) { static_assert( std::is_same::value || std::is_same::value ); if( aValue.IsEmpty() ) return; auto fieldIt = std::find_if( aFields.begin(), aFields.end(), [&]( const T& f ) { return f.GetName() == aFieldName; } ); if( fieldIt != aFields.end() ) { fieldIt->SetText( aValue ); return; } if constexpr( std::is_same::value ) { wxASSERT( aFields.size() >= 1 ); SCH_ITEM* parent = static_cast( aFields.at( 0 ).GetParent() ); aFields.emplace_back( wxPoint(), aFields.size(), parent, aFieldName ); } else if constexpr( std::is_same::value ) aFields.emplace_back( aFields.size(), aFieldName ); aFields.back().SetText( aValue ); }