/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2012 Wayne Stambaugh * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "pcb_track.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using KIGFX::PCB_PAINTER; using KIGFX::PCB_RENDER_SETTINGS; PCB_TRACK::PCB_TRACK( BOARD_ITEM* aParent, KICAD_T idtype ) : BOARD_CONNECTED_ITEM( aParent, idtype ) { m_width = pcbIUScale.mmToIU( 0.2 ); // Gives a reasonable default width m_hasSolderMask = false; } EDA_ITEM* PCB_TRACK::Clone() const { return new PCB_TRACK( *this ); } void PCB_TRACK::CopyFrom( const BOARD_ITEM* aOther ) { wxCHECK( aOther && aOther->Type() == PCB_TRACE_T, /* void */ ); *this = *static_cast( aOther ); } PCB_ARC::PCB_ARC( BOARD_ITEM* aParent, const SHAPE_ARC* aArc ) : PCB_TRACK( aParent, PCB_ARC_T ) { m_Start = aArc->GetP0(); m_End = aArc->GetP1(); m_Mid = aArc->GetArcMid(); } EDA_ITEM* PCB_ARC::Clone() const { return new PCB_ARC( *this ); } void PCB_ARC::CopyFrom( const BOARD_ITEM* aOther ) { wxCHECK( aOther && aOther->Type() == PCB_ARC_T, /* void */ ); *this = *static_cast( aOther ); } PCB_VIA::PCB_VIA( BOARD_ITEM* aParent ) : PCB_TRACK( aParent, PCB_VIA_T ), m_padStack( this ) { SetViaType( VIATYPE::THROUGH ); Padstack().Drill().start = F_Cu; Padstack().Drill().end = B_Cu; SetDrillDefault(); m_padStack.SetUnconnectedLayerMode( PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL ); // Padstack layerset is not used for vias right now m_padStack.LayerSet().reset(); // For now, vias are always circles m_padStack.SetShape( PAD_SHAPE::CIRCLE, PADSTACK::ALL_LAYERS ); for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu, BoardCopperLayerCount() ) ) m_zoneLayerOverrides[layer] = ZLO_NONE; m_isFree = false; } PCB_VIA::PCB_VIA( const PCB_VIA& aOther ) : PCB_TRACK( aOther.GetParent(), PCB_VIA_T ), m_padStack( this ) { PCB_VIA::operator=( aOther ); const_cast( m_Uuid ) = aOther.m_Uuid; m_zoneLayerOverrides = aOther.m_zoneLayerOverrides; } PCB_VIA& PCB_VIA::operator=( const PCB_VIA &aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther ); m_Start = aOther.m_Start; m_End = aOther.m_End; m_viaType = aOther.m_viaType; m_padStack = aOther.m_padStack; m_isFree = aOther.m_isFree; return *this; } void PCB_VIA::CopyFrom( const BOARD_ITEM* aOther ) { wxCHECK( aOther && aOther->Type() == PCB_VIA_T, /* void */ ); *this = *static_cast( aOther ); } EDA_ITEM* PCB_VIA::Clone() const { return new PCB_VIA( *this ); } wxString PCB_VIA::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const { wxString formatStr; switch( GetViaType() ) { case VIATYPE::BLIND_BURIED: formatStr = _( "Blind/Buried Via %s on %s" ); break; case VIATYPE::MICROVIA: formatStr = _( "Micro Via %s on %s" ); break; default: formatStr = _( "Via %s on %s" ); break; } return wxString::Format( formatStr, GetNetnameMsg(), layerMaskDescribe() ); } BITMAPS PCB_VIA::GetMenuImage() const { return BITMAPS::via; } bool PCB_TRACK::operator==( const BOARD_ITEM& aBoardItem ) const { if( aBoardItem.Type() != Type() ) return false; const PCB_TRACK& other = static_cast( aBoardItem ); return *this == other; } bool PCB_TRACK::operator==( const PCB_TRACK& aOther ) const { return m_Start == aOther.m_Start && m_End == aOther.m_End && m_layer == aOther.m_layer && m_width == aOther.m_width && m_hasSolderMask == aOther.m_hasSolderMask && m_solderMaskMargin == aOther.m_solderMaskMargin; } double PCB_TRACK::Similarity( const BOARD_ITEM& aOther ) const { if( aOther.Type() != Type() ) return 0.0; const PCB_TRACK& other = static_cast( aOther ); double similarity = 1.0; if( m_layer != other.m_layer ) similarity *= 0.9; if( m_width != other.m_width ) similarity *= 0.9; if( m_Start != other.m_Start ) similarity *= 0.9; if( m_End != other.m_End ) similarity *= 0.9; if( m_hasSolderMask != other.m_hasSolderMask ) similarity *= 0.9; if( m_solderMaskMargin != other.m_solderMaskMargin ) similarity *= 0.9; return similarity; } bool PCB_ARC::operator==( const BOARD_ITEM& aBoardItem ) const { if( aBoardItem.Type() != Type() ) return false; const PCB_ARC& other = static_cast( aBoardItem ); return *this == other; } bool PCB_ARC::operator==( const PCB_TRACK& aOther ) const { if( aOther.Type() != Type() ) return false; const PCB_ARC& other = static_cast( aOther ); return *this == other; } bool PCB_ARC::operator==( const PCB_ARC& aOther ) const { return m_Start == aOther.m_Start && m_End == aOther.m_End && m_Mid == aOther.m_Mid && m_layer == aOther.m_layer && GetWidth() == aOther.GetWidth() && m_hasSolderMask == aOther.m_hasSolderMask && m_solderMaskMargin == aOther.m_solderMaskMargin; } double PCB_ARC::Similarity( const BOARD_ITEM& aOther ) const { if( aOther.Type() != Type() ) return 0.0; const PCB_ARC& other = static_cast( aOther ); double similarity = 1.0; if( m_layer != other.m_layer ) similarity *= 0.9; if( GetWidth() != other.GetWidth() ) similarity *= 0.9; if( m_Start != other.m_Start ) similarity *= 0.9; if( m_End != other.m_End ) similarity *= 0.9; if( m_Mid != other.m_Mid ) similarity *= 0.9; if( m_hasSolderMask != other.m_hasSolderMask ) similarity *= 0.9; if( m_solderMaskMargin != other.m_solderMaskMargin ) similarity *= 0.9; return similarity; } bool PCB_VIA::operator==( const BOARD_ITEM& aBoardItem ) const { if( aBoardItem.Type() != Type() ) return false; const PCB_VIA& other = static_cast( aBoardItem ); return *this == other; } bool PCB_VIA::operator==( const PCB_TRACK& aOther ) const { if( aOther.Type() != Type() ) return false; const PCB_VIA& other = static_cast( aOther ); return *this == other; } bool PCB_VIA::operator==( const PCB_VIA& aOther ) const { return m_Start == aOther.m_Start && m_End == aOther.m_End && m_layer == aOther.m_layer && m_padStack == aOther.m_padStack && m_viaType == aOther.m_viaType && m_zoneLayerOverrides == aOther.m_zoneLayerOverrides; } double PCB_VIA::Similarity( const BOARD_ITEM& aOther ) const { if( aOther.Type() != Type() ) return 0.0; const PCB_VIA& other = static_cast( aOther ); double similarity = 1.0; if( m_layer != other.m_layer ) similarity *= 0.9; if( m_Start != other.m_Start ) similarity *= 0.9; if( m_End != other.m_End ) similarity *= 0.9; if( m_padStack != other.m_padStack ) similarity *= 0.9; if( m_viaType != other.m_viaType ) similarity *= 0.9; if( m_zoneLayerOverrides != other.m_zoneLayerOverrides ) similarity *= 0.9; return similarity; } void PCB_VIA::SetWidth( int aWidth ) { m_padStack.SetSize( { aWidth, aWidth }, PADSTACK::ALL_LAYERS ); } int PCB_VIA::GetWidth() const { return m_padStack.Size( PADSTACK::ALL_LAYERS ).x; } void PCB_VIA::SetWidth( PCB_LAYER_ID aLayer, int aWidth ) { m_padStack.SetSize( { aWidth, aWidth }, aLayer ); } int PCB_VIA::GetWidth( PCB_LAYER_ID aLayer ) const { return m_padStack.Size( aLayer ).x; } void PCB_TRACK::Serialize( google::protobuf::Any &aContainer ) const { kiapi::board::types::Track track; track.mutable_id()->set_value( m_Uuid.AsStdString() ); track.mutable_start()->set_x_nm( GetStart().x ); track.mutable_start()->set_y_nm( GetStart().y ); track.mutable_end()->set_x_nm( GetEnd().x ); track.mutable_end()->set_y_nm( GetEnd().y ); track.mutable_width()->set_value_nm( GetWidth() ); track.set_layer( ToProtoEnum( GetLayer() ) ); track.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED : kiapi::common::types::LockedState::LS_UNLOCKED ); PackNet( track.mutable_net() ); // TODO m_hasSolderMask and m_solderMaskMargin aContainer.PackFrom( track ); } bool PCB_TRACK::Deserialize( const google::protobuf::Any &aContainer ) { kiapi::board::types::Track track; if( !aContainer.UnpackTo( &track ) ) return false; const_cast( m_Uuid ) = KIID( track.id().value() ); SetStart( VECTOR2I( track.start().x_nm(), track.start().y_nm() ) ); SetEnd( VECTOR2I( track.end().x_nm(), track.end().y_nm() ) ); SetWidth( track.width().value_nm() ); SetLayer( FromProtoEnum( track.layer() ) ); UnpackNet( track.net() ); SetLocked( track.locked() == kiapi::common::types::LockedState::LS_LOCKED ); // TODO m_hasSolderMask and m_solderMaskMargin return true; } void PCB_ARC::Serialize( google::protobuf::Any &aContainer ) const { kiapi::board::types::Arc arc; arc.mutable_id()->set_value( m_Uuid.AsStdString() ); arc.mutable_start()->set_x_nm( GetStart().x ); arc.mutable_start()->set_y_nm( GetStart().y ); arc.mutable_mid()->set_x_nm( GetMid().x ); arc.mutable_mid()->set_y_nm( GetMid().y ); arc.mutable_end()->set_x_nm( GetEnd().x ); arc.mutable_end()->set_y_nm( GetEnd().y ); arc.mutable_width()->set_value_nm( GetWidth() ); arc.set_layer( ToProtoEnum( GetLayer() ) ); arc.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED : kiapi::common::types::LockedState::LS_UNLOCKED ); PackNet( arc.mutable_net() ); // TODO m_hasSolderMask and m_solderMaskMargin aContainer.PackFrom( arc ); } bool PCB_ARC::Deserialize( const google::protobuf::Any &aContainer ) { kiapi::board::types::Arc arc; if( !aContainer.UnpackTo( &arc ) ) return false; const_cast( m_Uuid ) = KIID( arc.id().value() ); SetStart( VECTOR2I( arc.start().x_nm(), arc.start().y_nm() ) ); SetMid( VECTOR2I( arc.mid().x_nm(), arc.mid().y_nm() ) ); SetEnd( VECTOR2I( arc.end().x_nm(), arc.end().y_nm() ) ); SetWidth( arc.width().value_nm() ); SetLayer( FromProtoEnum( arc.layer() ) ); UnpackNet( arc.net() ); SetLocked( arc.locked() == kiapi::common::types::LockedState::LS_LOCKED ); // TODO m_hasSolderMask and m_solderMaskMargin return true; } void PCB_VIA::Serialize( google::protobuf::Any &aContainer ) const { kiapi::board::types::Via via; via.mutable_id()->set_value( m_Uuid.AsStdString() ); via.mutable_position()->set_x_nm( GetPosition().x ); via.mutable_position()->set_y_nm( GetPosition().y ); PADSTACK padstack = Padstack(); google::protobuf::Any padStackWrapper; padstack.Serialize( padStackWrapper ); padStackWrapper.UnpackTo( via.mutable_pad_stack() ); // PADSTACK::m_layerSet is not used by vias via.mutable_pad_stack()->clear_layers(); kiapi::board::PackLayerSet( *via.mutable_pad_stack()->mutable_layers(), GetLayerSet() ); via.set_type( ToProtoEnum( GetViaType() ) ); via.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED : kiapi::common::types::LockedState::LS_UNLOCKED ); PackNet( via.mutable_net() ); aContainer.PackFrom( via ); } bool PCB_VIA::Deserialize( const google::protobuf::Any &aContainer ) { kiapi::board::types::Via via; if( !aContainer.UnpackTo( &via ) ) return false; const_cast( m_Uuid ) = KIID( via.id().value() ); SetStart( VECTOR2I( via.position().x_nm(), via.position().y_nm() ) ); SetEnd( GetStart() ); google::protobuf::Any padStackWrapper; padStackWrapper.PackFrom( via.pad_stack() ); if( !m_padStack.Deserialize( padStackWrapper ) ) return false; // PADSTACK::m_layerSet is not used by vias m_padStack.LayerSet().reset(); SetViaType( FromProtoEnum( via.type() ) ); UnpackNet( via.net() ); SetLocked( via.locked() == kiapi::common::types::LockedState::LS_LOCKED ); return true; } bool PCB_TRACK::ApproxCollinear( const PCB_TRACK& aTrack ) { SEG a( m_Start, m_End ); SEG b( aTrack.GetStart(), aTrack.GetEnd() ); return a.ApproxCollinear( b ); } MINOPTMAX PCB_TRACK::GetWidthConstraint( wxString* aSource ) const { DRC_CONSTRAINT constraint; if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings(); constraint = bds.m_DRCEngine->EvalRules( TRACK_WIDTH_CONSTRAINT, this, nullptr, m_layer ); } if( aSource ) *aSource = constraint.GetName(); return constraint.Value(); } MINOPTMAX PCB_VIA::GetWidthConstraint( wxString* aSource ) const { DRC_CONSTRAINT constraint; if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings(); constraint = bds.m_DRCEngine->EvalRules( VIA_DIAMETER_CONSTRAINT, this, nullptr, m_layer ); } if( aSource ) *aSource = constraint.GetName(); return constraint.Value(); } MINOPTMAX PCB_VIA::GetDrillConstraint( wxString* aSource ) const { DRC_CONSTRAINT constraint; if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings(); constraint = bds.m_DRCEngine->EvalRules( HOLE_SIZE_CONSTRAINT, this, nullptr, m_layer ); } if( aSource ) *aSource = constraint.GetName(); return constraint.Value(); } int PCB_VIA::GetMinAnnulus( PCB_LAYER_ID aLayer, wxString* aSource ) const { if( !FlashLayer( aLayer ) ) { if( aSource ) *aSource = _( "removed annular ring" ); return 0; } DRC_CONSTRAINT constraint; if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings(); constraint = bds.m_DRCEngine->EvalRules( ANNULAR_WIDTH_CONSTRAINT, this, nullptr, aLayer ); } if( constraint.Value().HasMin() ) { if( aSource ) *aSource = constraint.GetName(); return constraint.Value().Min(); } return 0; } int PCB_VIA::GetDrillValue() const { if( m_padStack.Drill().size.x > 0 ) // Use the specific value. return m_padStack.Drill().size.x; // Use the default value from the Netclass NETCLASS* netclass = GetEffectiveNetClass(); if( GetViaType() == VIATYPE::MICROVIA ) return netclass->GetuViaDrill(); return netclass->GetViaDrill(); } EDA_ITEM_FLAGS PCB_TRACK::IsPointOnEnds( const VECTOR2I& point, int min_dist ) const { EDA_ITEM_FLAGS result = 0; if( min_dist < 0 ) min_dist = m_width / 2; if( min_dist == 0 ) { if( m_Start == point ) result |= STARTPOINT; if( m_End == point ) result |= ENDPOINT; } else { double dist = m_Start.Distance( point ); if( min_dist >= dist ) result |= STARTPOINT; dist = m_End.Distance( point ); if( min_dist >= dist ) result |= ENDPOINT; } return result; } const BOX2I PCB_TRACK::GetBoundingBox() const { // end of track is round, this is its radius, rounded up int radius = ( m_width + 1 ) / 2; int ymax, xmax, ymin, xmin; if( Type() == PCB_VIA_T ) { ymax = m_Start.y; xmax = m_Start.x; ymin = m_Start.y; xmin = m_Start.x; } else if( Type() == PCB_ARC_T ) { std::shared_ptr arc = GetEffectiveShape(); BOX2I bbox = arc->BBox(); xmin = bbox.GetLeft(); xmax = bbox.GetRight(); ymin = bbox.GetTop(); ymax = bbox.GetBottom(); } else { ymax = std::max( m_Start.y, m_End.y ); xmax = std::max( m_Start.x, m_End.x ); ymin = std::min( m_Start.y, m_End.y ); xmin = std::min( m_Start.x, m_End.x ); } ymax += radius; xmax += radius; ymin -= radius; xmin -= radius; // return a rectangle which is [pos,dim) in nature. therefore the +1 return BOX2ISafe( VECTOR2I( xmin, ymin ), VECTOR2L( (int64_t) xmax - xmin + 1, (int64_t) ymax - ymin + 1 ) ); } const BOX2I PCB_VIA::GetBoundingBox() const { int radius = 0; Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { radius = std::max( radius, GetWidth( aLayer ) ); } ); // via is round, this is its radius, rounded up radius = ( radius + 1 ) / 2; int ymax = m_Start.y + radius; int xmax = m_Start.x + radius; int ymin = m_Start.y - radius; int xmin = m_Start.x - radius; // return a rectangle which is [pos,dim) in nature. therefore the +1 return BOX2ISafe( VECTOR2I( xmin, ymin ), VECTOR2L( (int64_t) xmax - xmin + 1, (int64_t) ymax - ymin + 1 ) ); } const BOX2I PCB_VIA::GetBoundingBox( PCB_LAYER_ID aLayer ) const { int radius = GetWidth( aLayer ); // via is round, this is its radius, rounded up radius = ( radius + 1 ) / 2; int ymax = m_Start.y + radius; int xmax = m_Start.x + radius; int ymin = m_Start.y - radius; int xmin = m_Start.x - radius; // return a rectangle which is [pos,dim) in nature. therefore the +1 return BOX2ISafe( VECTOR2I( xmin, ymin ), VECTOR2L( (int64_t) xmax - xmin + 1, (int64_t) ymax - ymin + 1 ) ); } double PCB_TRACK::GetLength() const { return m_Start.Distance( m_End ); } double PCB_TRACK::GetDelay() const { const BOARD* board = GetBoard(); if( !board ) return 0.0; const LENGTH_DELAY_CALCULATION* calc = board->GetLengthCalculation(); std::vector items{ calc->GetLengthCalculationItem( this ) }; constexpr PATH_OPTIMISATIONS opts = { .OptimiseViaLayers = false, .MergeTracks = false, .OptimiseTracesInPads = false, .InferViaInPad = false }; return (double) calc->CalculateDelay( items, opts ); } void PCB_TRACK::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) { RotatePoint( m_Start, aRotCentre, aAngle ); RotatePoint( m_End, aRotCentre, aAngle ); } void PCB_ARC::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) { RotatePoint( m_Start, aRotCentre, aAngle ); RotatePoint( m_End, aRotCentre, aAngle ); RotatePoint( m_Mid, aRotCentre, aAngle ); } void PCB_TRACK::Mirror( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { MIRROR( m_Start, aCentre, aFlipDirection ); MIRROR( m_End, aCentre, aFlipDirection ); } void PCB_ARC::Mirror( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { MIRROR( m_Start, aCentre, aFlipDirection ); MIRROR( m_End, aCentre, aFlipDirection ); MIRROR( m_Mid, aCentre, aFlipDirection ); } void PCB_TRACK::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT ) { m_Start.x = aCentre.x - ( m_Start.x - aCentre.x ); m_End.x = aCentre.x - ( m_End.x - aCentre.x ); } else { m_Start.y = aCentre.y - ( m_Start.y - aCentre.y ); m_End.y = aCentre.y - ( m_End.y - aCentre.y ); } SetLayer( GetBoard()->FlipLayer( GetLayer() ) ); } void PCB_ARC::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT ) { m_Start.x = aCentre.x - ( m_Start.x - aCentre.x ); m_End.x = aCentre.x - ( m_End.x - aCentre.x ); m_Mid.x = aCentre.x - ( m_Mid.x - aCentre.x ); } else { m_Start.y = aCentre.y - ( m_Start.y - aCentre.y ); m_End.y = aCentre.y - ( m_End.y - aCentre.y ); m_Mid.y = aCentre.y - ( m_Mid.y - aCentre.y ); } SetLayer( GetBoard()->FlipLayer( GetLayer() ) ); } bool PCB_ARC::IsCCW() const { VECTOR2L start = m_Start; VECTOR2L start_end = m_End - start; VECTOR2L start_mid = m_Mid - start; return start_end.Cross( start_mid ) < 0; } void PCB_VIA::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT ) { m_Start.x = aCentre.x - ( m_Start.x - aCentre.x ); m_End.x = aCentre.x - ( m_End.x - aCentre.x ); } else { m_Start.y = aCentre.y - ( m_Start.y - aCentre.y ); m_End.y = aCentre.y - ( m_End.y - aCentre.y ); } if( GetViaType() != VIATYPE::THROUGH ) { PCB_LAYER_ID top_layer; PCB_LAYER_ID bottom_layer; LayerPair( &top_layer, &bottom_layer ); top_layer = GetBoard()->FlipLayer( top_layer ); bottom_layer = GetBoard()->FlipLayer( bottom_layer ); SetLayerPair( top_layer, bottom_layer ); } } INSPECT_RESULT PCB_TRACK::Visit( INSPECTOR inspector, void* testData, const std::vector& aScanTypes ) { for( KICAD_T scanType : aScanTypes ) { if( scanType == Type() ) { if( INSPECT_RESULT::QUIT == inspector( this, testData ) ) return INSPECT_RESULT::QUIT; } } return INSPECT_RESULT::CONTINUE; } std::shared_ptr PCB_VIA::GetEffectiveHoleShape() const { return std::make_shared( SEG( m_Start, m_Start ), Padstack().Drill().size.x ); } // clang-format off: the suggestion is slightly less readable void PCB_VIA::SetFrontTentingMode( TENTING_MODE aMode ) { switch( aMode ) { case TENTING_MODE::FROM_RULES: m_padStack.FrontOuterLayers().has_solder_mask.reset(); break; case TENTING_MODE::TENTED: m_padStack.FrontOuterLayers().has_solder_mask = true; break; case TENTING_MODE::NOT_TENTED: m_padStack.FrontOuterLayers().has_solder_mask = false; break; } } TENTING_MODE PCB_VIA::GetFrontTentingMode() const { if( m_padStack.FrontOuterLayers().has_solder_mask.has_value() ) { return *m_padStack.FrontOuterLayers().has_solder_mask ? TENTING_MODE::TENTED : TENTING_MODE::NOT_TENTED; } return TENTING_MODE::FROM_RULES; } void PCB_VIA::SetBackTentingMode( TENTING_MODE aMode ) { switch( aMode ) { case TENTING_MODE::FROM_RULES: m_padStack.BackOuterLayers().has_solder_mask.reset(); break; case TENTING_MODE::TENTED: m_padStack.BackOuterLayers().has_solder_mask = true; break; case TENTING_MODE::NOT_TENTED: m_padStack.BackOuterLayers().has_solder_mask = false; break; } } TENTING_MODE PCB_VIA::GetBackTentingMode() const { if( m_padStack.BackOuterLayers().has_solder_mask.has_value() ) { return *m_padStack.BackOuterLayers().has_solder_mask ? TENTING_MODE::TENTED : TENTING_MODE::NOT_TENTED; } return TENTING_MODE::FROM_RULES; } void PCB_VIA::SetFrontCoveringMode( COVERING_MODE aMode ) { switch( aMode ) { case COVERING_MODE::FROM_RULES: m_padStack.FrontOuterLayers().has_covering.reset(); break; case COVERING_MODE::COVERED: m_padStack.FrontOuterLayers().has_covering = true; break; case COVERING_MODE::NOT_COVERED: m_padStack.FrontOuterLayers().has_covering = false; break; } } COVERING_MODE PCB_VIA::GetFrontCoveringMode() const { if( m_padStack.FrontOuterLayers().has_covering.has_value() ) { return *m_padStack.FrontOuterLayers().has_covering ? COVERING_MODE::COVERED : COVERING_MODE::NOT_COVERED; } return COVERING_MODE::FROM_RULES; } void PCB_VIA::SetBackCoveringMode( COVERING_MODE aMode ) { switch( aMode ) { case COVERING_MODE::FROM_RULES: m_padStack.BackOuterLayers().has_covering.reset(); break; case COVERING_MODE::COVERED: m_padStack.BackOuterLayers().has_covering = true; break; case COVERING_MODE::NOT_COVERED: m_padStack.BackOuterLayers().has_covering = false; break; } } COVERING_MODE PCB_VIA::GetBackCoveringMode() const { if( m_padStack.BackOuterLayers().has_covering.has_value() ) { return *m_padStack.BackOuterLayers().has_covering ? COVERING_MODE::COVERED : COVERING_MODE::NOT_COVERED; } return COVERING_MODE::FROM_RULES; } void PCB_VIA::SetFrontPluggingMode( PLUGGING_MODE aMode ) { switch( aMode ) { case PLUGGING_MODE::FROM_RULES: m_padStack.FrontOuterLayers().has_plugging.reset(); break; case PLUGGING_MODE::PLUGGED: m_padStack.FrontOuterLayers().has_plugging = true; break; case PLUGGING_MODE::NOT_PLUGGED: m_padStack.FrontOuterLayers().has_plugging = false; break; } } PLUGGING_MODE PCB_VIA::GetFrontPluggingMode() const { if( m_padStack.FrontOuterLayers().has_plugging.has_value() ) { return *m_padStack.FrontOuterLayers().has_plugging ? PLUGGING_MODE::PLUGGED : PLUGGING_MODE::NOT_PLUGGED; } return PLUGGING_MODE::FROM_RULES; } void PCB_VIA::SetBackPluggingMode( PLUGGING_MODE aMode ) { switch( aMode ) { case PLUGGING_MODE::FROM_RULES: m_padStack.BackOuterLayers().has_plugging.reset(); break; case PLUGGING_MODE::PLUGGED: m_padStack.BackOuterLayers().has_plugging = true; break; case PLUGGING_MODE::NOT_PLUGGED: m_padStack.BackOuterLayers().has_plugging = false; break; } } PLUGGING_MODE PCB_VIA::GetBackPluggingMode() const { if( m_padStack.BackOuterLayers().has_plugging.has_value() ) { return *m_padStack.BackOuterLayers().has_plugging ? PLUGGING_MODE::PLUGGED : PLUGGING_MODE::NOT_PLUGGED; } return PLUGGING_MODE::FROM_RULES; } void PCB_VIA::SetCappingMode( CAPPING_MODE aMode ) { switch( aMode ) { case CAPPING_MODE::FROM_RULES: m_padStack.Drill().is_capped.reset(); break; case CAPPING_MODE::CAPPED: m_padStack.Drill().is_capped = true; break; case CAPPING_MODE::NOT_CAPPED: m_padStack.Drill().is_capped = false; break; } } CAPPING_MODE PCB_VIA::GetCappingMode() const { if( m_padStack.Drill().is_capped.has_value() ) { return *m_padStack.Drill().is_capped ? CAPPING_MODE::CAPPED : CAPPING_MODE::NOT_CAPPED; } return CAPPING_MODE::FROM_RULES; } void PCB_VIA::SetFillingMode( FILLING_MODE aMode ) { switch( aMode ) { case FILLING_MODE::FROM_RULES: m_padStack.Drill().is_filled.reset(); break; case FILLING_MODE::FILLED: m_padStack.Drill().is_filled = true; break; case FILLING_MODE::NOT_FILLED: m_padStack.Drill().is_filled = false; break; } } FILLING_MODE PCB_VIA::GetFillingMode() const { if( m_padStack.Drill().is_filled.has_value() ) { return *m_padStack.Drill().is_filled ? FILLING_MODE::FILLED : FILLING_MODE::NOT_FILLED; } return FILLING_MODE::FROM_RULES; } // clang-format on: the suggestion is slightly less readable bool PCB_VIA::IsTented( PCB_LAYER_ID aLayer ) const { wxCHECK_MSG( IsFrontLayer( aLayer ) || IsBackLayer( aLayer ), true, "Invalid layer passed to IsTented" ); bool front = IsFrontLayer( aLayer ); if( front && m_padStack.FrontOuterLayers().has_solder_mask.has_value() ) return *m_padStack.FrontOuterLayers().has_solder_mask; if( !front && m_padStack.BackOuterLayers().has_solder_mask.has_value() ) return *m_padStack.BackOuterLayers().has_solder_mask; if( const BOARD* board = GetBoard() ) { return front ? board->GetDesignSettings().m_TentViasFront : board->GetDesignSettings().m_TentViasBack; } return true; } int PCB_VIA::GetSolderMaskExpansion() const { if( const BOARD* board = GetBoard() ) return board->GetDesignSettings().m_SolderMaskExpansion; else return 0; } int PCB_TRACK::GetSolderMaskExpansion() const { int margin = 0; if( const BOARD* board = GetBoard() ) { DRC_CONSTRAINT constraint; std::shared_ptr drcEngine = board->GetDesignSettings().m_DRCEngine; constraint = drcEngine->EvalRules( SOLDER_MASK_EXPANSION_CONSTRAINT, this, nullptr, m_layer ); if( constraint.m_Value.HasOpt() ) margin = constraint.m_Value.Opt(); } else if( m_solderMaskMargin.has_value() ) { margin = m_solderMaskMargin.value(); } // Ensure the resulting mask opening has a non-negative size if( margin < 0 ) margin = std::max( margin, -m_width / 2 ); return margin; } bool PCB_TRACK::IsOnLayer( PCB_LAYER_ID aLayer ) const { if( aLayer == m_layer ) { return true; } if( m_hasSolderMask && ( ( aLayer == F_Mask && m_layer == F_Cu ) || ( aLayer == B_Mask && m_layer == B_Cu ) ) ) { return true; } return false; } bool PCB_VIA::IsOnLayer( PCB_LAYER_ID aLayer ) const { #if 0 // Nice and simple, but raises its ugly head in performance profiles.... return GetLayerSet().test( aLayer ); #endif if( IsCopperLayer( aLayer ) && LAYER_RANGE::Contains( Padstack().Drill().start, Padstack().Drill().end, aLayer ) ) { return true; } // Test for via on mask layers: a via on on a mask layer if not tented and if // it is on the corresponding external copper layer if( aLayer == F_Mask ) return Padstack().Drill().start == F_Cu && !IsTented( F_Mask ); else if( aLayer == B_Mask ) return Padstack().Drill().end == B_Cu && !IsTented( B_Mask ); return false; } bool PCB_VIA::HasValidLayerPair( int aCopperLayerCount ) { // return true if top and bottom layers are valid, depending on the copper layer count // aCopperLayerCount is expected >= 2 int layer_id = aCopperLayerCount*2; if( Padstack().Drill().start > B_Cu ) { if( Padstack().Drill().start > layer_id ) return false; } if( Padstack().Drill().end > B_Cu ) { if( Padstack().Drill().end > layer_id ) return false; } return true; } PCB_LAYER_ID PCB_VIA::GetLayer() const { return Padstack().Drill().start; } void PCB_VIA::SetLayer( PCB_LAYER_ID aLayer ) { Padstack().Drill().start = aLayer; } void PCB_TRACK::SetLayerSet( const LSET& aLayerSet ) { aLayerSet.RunOnLayers( [&]( PCB_LAYER_ID layer ) { if( IsCopperLayer( layer ) ) SetLayer( layer ); else if( IsSolderMaskLayer( layer ) ) SetHasSolderMask( true ); } ); } LSET PCB_TRACK::GetLayerSet() const { LSET layermask( { m_layer } ); if( m_hasSolderMask ) { if( layermask.test( F_Cu ) ) layermask.set( F_Mask ); else if( layermask.test( B_Cu ) ) layermask.set( B_Mask ); } return layermask; } LSET PCB_VIA::GetLayerSet() const { LSET layermask; if( Padstack().Drill().start < PCBNEW_LAYER_ID_START ) return layermask; if( GetViaType() == VIATYPE::THROUGH ) { layermask = LSET::AllCuMask( BoardCopperLayerCount() ); } else { LAYER_RANGE range( Padstack().Drill().start, Padstack().Drill().end, BoardCopperLayerCount() ); int cnt = BoardCopperLayerCount(); // PCB_LAYER_IDs are numbered from front to back, this is top to bottom. for( PCB_LAYER_ID id : range ) { layermask.set( id ); if( --cnt <= 0 ) break; } } if( !IsTented( F_Mask ) && layermask.test( F_Cu ) ) layermask.set( F_Mask ); if( !IsTented( B_Mask ) && layermask.test( B_Cu ) ) layermask.set( B_Mask ); return layermask; } void PCB_VIA::SetLayerSet( const LSET& aLayerSet ) { // Vias do not use a LSET, just a top and bottom layer pair // So we need to set these 2 layers according to the allowed layers in aLayerSet // For via through, only F_Cu and B_Cu are allowed. aLayerSet is ignored if( GetViaType() == VIATYPE::THROUGH ) { Padstack().Drill().start = F_Cu; Padstack().Drill().end = B_Cu; return; } // For blind buried vias, find the top and bottom layers bool top_found = false; bool bottom_found = false; aLayerSet.RunOnLayers( [&]( PCB_LAYER_ID layer ) { // tpo layer and bottom Layer are copper layers, so consider only copper layers if( IsCopperLayer( layer ) ) { // The top layer is the first layer found in list and // cannot the B_Cu if( !top_found && layer != B_Cu ) { Padstack().Drill().start = layer; top_found = true; } // The bottom layer is the last layer found in list or B_Cu if( !bottom_found ) Padstack().Drill().end = layer; if( layer == B_Cu ) bottom_found = true; } } ); } void PCB_VIA::SetLayerPair( PCB_LAYER_ID aTopLayer, PCB_LAYER_ID aBottomLayer ) { Padstack().Drill().start = aTopLayer; Padstack().Drill().end = aBottomLayer; SanitizeLayers(); } void PCB_VIA::SetTopLayer( PCB_LAYER_ID aLayer ) { // refuse invalid via if( aLayer == Padstack().Drill().end ) return; Padstack().Drill().start = aLayer; SanitizeLayers(); } void PCB_VIA::SetBottomLayer( PCB_LAYER_ID aLayer ) { // refuse invalid via if( aLayer == Padstack().Drill().start ) return; Padstack().Drill().end = aLayer; SanitizeLayers(); } void PCB_VIA::LayerPair( PCB_LAYER_ID* top_layer, PCB_LAYER_ID* bottom_layer ) const { PCB_LAYER_ID t_layer = F_Cu; PCB_LAYER_ID b_layer = B_Cu; if( GetViaType() != VIATYPE::THROUGH ) { b_layer = Padstack().Drill().end; t_layer = Padstack().Drill().start; if( !IsCopperLayerLowerThan( b_layer, t_layer ) ) std::swap( b_layer, t_layer ); } if( top_layer ) *top_layer = t_layer; if( bottom_layer ) *bottom_layer = b_layer; } PCB_LAYER_ID PCB_VIA::TopLayer() const { return Padstack().Drill().start; } PCB_LAYER_ID PCB_VIA::BottomLayer() const { return Padstack().Drill().end; } void PCB_VIA::SanitizeLayers() { if( GetViaType() == VIATYPE::THROUGH ) { Padstack().Drill().start = F_Cu; Padstack().Drill().end = B_Cu; } if( !IsCopperLayerLowerThan( Padstack().Drill().end, Padstack().Drill().start) ) std::swap( Padstack().Drill().end, Padstack().Drill().start ); } bool PCB_VIA::FlashLayer( const LSET& aLayers ) const { for( PCB_LAYER_ID layer : aLayers ) { if( FlashLayer( layer ) ) return true; } return false; } bool PCB_VIA::FlashLayer( int aLayer ) const { // Return the "normal" shape if the caller doesn't specify a particular layer if( aLayer == UNDEFINED_LAYER ) return true; const BOARD* board = GetBoard(); PCB_LAYER_ID layer = static_cast( aLayer ); if( !board ) return true; if( !IsOnLayer( layer ) ) return false; if( !IsCopperLayer( layer ) ) return true; switch( Padstack().UnconnectedLayerMode() ) { case PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL: return true; case PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END: { if( layer == Padstack().Drill().start || layer == Padstack().Drill().end ) return true; // Check for removal below break; } case PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL: // Check for removal below break; case PADSTACK::UNCONNECTED_LAYER_MODE::START_END_ONLY: return layer == Padstack().Drill().start || layer == Padstack().Drill().end; } if( GetZoneLayerOverride( layer ) == ZLO_FORCE_FLASHED ) { return true; } else { // Must be static to keep from raising its ugly head in performance profiles static std::initializer_list nonZoneTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T }; return board->GetConnectivity()->IsConnectedOnLayer( this, layer, nonZoneTypes ); } } void PCB_VIA::ClearZoneLayerOverrides() { std::unique_lock cacheLock( m_zoneLayerOverridesMutex ); for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu, BoardCopperLayerCount() ) ) m_zoneLayerOverrides[layer] = ZLO_NONE; } const ZONE_LAYER_OVERRIDE& PCB_VIA::GetZoneLayerOverride( PCB_LAYER_ID aLayer ) const { static const ZONE_LAYER_OVERRIDE defaultOverride = ZLO_NONE; auto it = m_zoneLayerOverrides.find( aLayer ); return it != m_zoneLayerOverrides.end() ? it->second : defaultOverride; } void PCB_VIA::SetZoneLayerOverride( PCB_LAYER_ID aLayer, ZONE_LAYER_OVERRIDE aOverride ) { std::unique_lock cacheLock( m_zoneLayerOverridesMutex ); m_zoneLayerOverrides[aLayer] = aOverride; } void PCB_VIA::GetOutermostConnectedLayers( PCB_LAYER_ID* aTopmost, PCB_LAYER_ID* aBottommost ) const { *aTopmost = UNDEFINED_LAYER; *aBottommost = UNDEFINED_LAYER; static std::initializer_list nonZoneTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T }; for( int layer = TopLayer(); layer <= BottomLayer(); ++layer ) { bool connected = false; if( GetZoneLayerOverride( static_cast( layer ) ) == ZLO_FORCE_FLASHED ) { connected = true; } else if( GetBoard()->GetConnectivity()->IsConnectedOnLayer( this, layer, nonZoneTypes ) ) { connected = true; } if( connected ) { if( *aTopmost == UNDEFINED_LAYER ) *aTopmost = ToLAYER_ID( layer ); *aBottommost = ToLAYER_ID( layer ); } } } std::vector PCB_TRACK::ViewGetLayers() const { // Show the track and its netname on different layers const PCB_LAYER_ID layer = GetLayer(); std::vector layers{ layer, GetNetnameLayer( layer ), LAYER_CLEARANCE_START + layer, }; layers.reserve( 6 ); if( m_hasSolderMask ) { if( m_layer == F_Cu ) layers.push_back( F_Mask ); else if( m_layer == B_Cu ) layers.push_back( B_Mask ); } if( IsLocked() ) layers.push_back( LAYER_LOCKED_ITEM_SHADOW ); return layers; } double PCB_TRACK::ViewGetLOD( int aLayer, const KIGFX::VIEW* aView ) const { PCB_PAINTER* painter = static_cast( aView->GetPainter() ); PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings(); if( !aView->IsLayerVisible( LAYER_TRACKS ) ) return LOD_HIDE; if( IsNetnameLayer( aLayer ) ) { if( GetNetCode() <= NETINFO_LIST::UNCONNECTED ) return LOD_HIDE; // Hide netnames on dimmed tracks if( renderSettings->GetHighContrast() ) { if( m_layer != renderSettings->GetPrimaryHighContrastLayer() ) return LOD_HIDE; } VECTOR2I start( GetStart() ); VECTOR2I end( GetEnd() ); // Calc the approximate size of the netname (assume square chars) SEG::ecoord nameSize = GetDisplayNetname().size() * GetWidth(); if( VECTOR2I( end - start ).SquaredEuclideanNorm() < nameSize * nameSize ) return LOD_HIDE; BOX2I clipBox = BOX2ISafe( aView->GetViewport() ); ClipLine( &clipBox, start.x, start.y, end.x, end.y ); if( VECTOR2I( end - start ).SquaredEuclideanNorm() == 0 ) return LOD_HIDE; // Netnames will be shown only if zoom is appropriate return lodScaleForThreshold( aView, m_width, pcbIUScale.mmToIU( 4.0 ) ); } if( aLayer == LAYER_LOCKED_ITEM_SHADOW ) { // Hide shadow if the main layer is not shown if( !aView->IsLayerVisible( m_layer ) ) return LOD_HIDE; // Hide shadow on dimmed tracks if( renderSettings->GetHighContrast() ) { if( m_layer != renderSettings->GetPrimaryHighContrastLayer() ) return LOD_HIDE; } } // Other layers are shown without any conditions return LOD_SHOW; } const BOX2I PCB_TRACK::ViewBBox() const { BOX2I bbox = GetBoundingBox(); if( const BOARD* board = GetBoard() ) bbox.Inflate( 2 * board->GetDesignSettings().GetBiggestClearanceValue() ); else bbox.Inflate( GetWidth() ); // Add a bit extra for safety return bbox; } std::vector PCB_VIA::ViewGetLayers() const { LAYER_RANGE layers( Padstack().Drill().start, Padstack().Drill().end, MAX_CU_LAYERS ); std::vector ret_layers{ LAYER_VIA_HOLES, LAYER_VIA_HOLEWALLS, LAYER_VIA_NETNAMES }; ret_layers.reserve( MAX_CU_LAYERS + 6 ); // TODO(JE) Rendering order issue #if 0 // Blind/buried vias (and microvias) use a different net name layer PCB_LAYER_ID layerTop, layerBottom; LayerPair( &layerTop, &layerBottom ); bool isBlindBuried = m_viaType == VIATYPE::BLIND_BURIED || ( m_viaType == VIATYPE::MICROVIA && ( layerTop != F_Cu || layerBottom != B_Cu ) ); #endif LSET cuMask = LSET::AllCuMask(); if( const BOARD* board = GetBoard() ) cuMask &= board->GetEnabledLayers(); for( PCB_LAYER_ID layer : layers ) { if( !cuMask.Contains( layer ) ) continue; ret_layers.push_back( LAYER_VIA_COPPER_START + layer ); ret_layers.push_back( LAYER_CLEARANCE_START + layer ); } if( IsLocked() ) ret_layers.push_back( LAYER_LOCKED_ITEM_SHADOW ); // Vias can also be on a solder mask layer. They are on these layers or not, // depending on the plot and solder mask options if( IsOnLayer( F_Mask ) ) ret_layers.push_back( F_Mask ); if( IsOnLayer( B_Mask ) ) ret_layers.push_back( B_Mask ); return ret_layers; } double PCB_VIA::ViewGetLOD( int aLayer, const KIGFX::VIEW* aView ) const { PCB_PAINTER* painter = static_cast( aView->GetPainter() ); PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings(); const BOARD* board = GetBoard(); // Meta control for hiding all vias if( !aView->IsLayerVisible( LAYER_VIAS ) ) return LOD_HIDE; // In high contrast mode don't show vias that don't cross the high-contrast layer if( renderSettings->GetHighContrast() ) { PCB_LAYER_ID highContrastLayer = renderSettings->GetPrimaryHighContrastLayer(); if( LSET::FrontTechMask().Contains( highContrastLayer ) ) highContrastLayer = F_Cu; else if( LSET::BackTechMask().Contains( highContrastLayer ) ) highContrastLayer = B_Cu; if( IsCopperLayer( highContrastLayer ) && GetViaType() != VIATYPE::THROUGH ) { if( IsCopperLayerLowerThan( Padstack().Drill().start, highContrastLayer ) || IsCopperLayerLowerThan( highContrastLayer, Padstack().Drill().end ) ) { return LOD_HIDE; } } } if( IsHoleLayer( aLayer ) ) { LSET visible; if( board ) { visible = board->GetVisibleLayers(); visible &= board->GetEnabledLayers(); } else { visible = LSET::AllLayersMask(); } if( m_viaType == VIATYPE::THROUGH ) { // Show a through via's hole if any physical layer is shown visible &= LSET::PhysicalLayersMask(); if( !visible.any() ) return LOD_HIDE; } else { // Show a blind or micro via's hole if it crosses a visible layer visible &= GetLayerSet(); if( !visible.any() ) return LOD_HIDE; } // The hole won't be visible anyway at this scale return lodScaleForThreshold( aView, GetDrillValue(), pcbIUScale.mmToIU( 0.25 ) ); } else if( IsNetnameLayer( aLayer ) ) { if( renderSettings->GetHighContrast() ) { // Hide netnames unless via is flashed to a high-contrast layer if( !FlashLayer( renderSettings->GetPrimaryHighContrastLayer() ) ) return LOD_HIDE; } else { LSET visible; if( board ) { visible = board->GetVisibleLayers(); visible &= board->GetEnabledLayers(); } else { visible = LSET::AllLayersMask(); } // Hide netnames unless pad is flashed to a visible layer if( !FlashLayer( visible ) ) return LOD_HIDE; } int width = GetWidth( ToLAYER_ID( aLayer ) ); // Netnames will be shown only if zoom is appropriate return lodScaleForThreshold( aView, width, pcbIUScale.mmToIU( 10 ) ); } if( !IsCopperLayer( aLayer ) ) { int width = GetWidth( ToLAYER_ID( aLayer ) ); return lodScaleForThreshold( aView, width, pcbIUScale.mmToIU( 0.6 ) ); } return LOD_SHOW; } wxString PCB_TRACK::GetFriendlyName() const { switch( Type() ) { case PCB_ARC_T: return _( "Track (arc)" ); case PCB_VIA_T: return _( "Via" ); case PCB_TRACE_T: default: return _( "Track" ); } } void PCB_TRACK::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { wxString msg; BOARD* board = GetBoard(); aList.emplace_back( _( "Type" ), GetFriendlyName() ); GetMsgPanelInfoBase_Common( aFrame, aList ); aList.emplace_back( _( "Layer" ), layerMaskDescribe() ); aList.emplace_back( _( "Width" ), aFrame->MessageTextFromValue( m_width ) ); if( Type() == PCB_ARC_T ) { double radius = static_cast( this )->GetRadius(); aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( radius ) ); } double segmentLength = GetLength(); double segmentDelay = GetDelay(); if( segmentDelay == 0.0 ) { aList.emplace_back( _( "Segment Length" ), aFrame->MessageTextFromValue( segmentLength ) ); } else { aList.emplace_back( _( "Segment Delay" ), aFrame->MessageTextFromValue( segmentDelay, true, EDA_DATA_TYPE::TIME ) ); } // Display full track length (in Pcbnew) if( board && GetNetCode() > 0 ) { int count = 0; double trackLen = 0.0; double lenPadToDie = 0.0; double trackDelay = 0.0; double delayPadToDie = 0.0; std::tie( count, trackLen, lenPadToDie, trackDelay, delayPadToDie ) = board->GetTrackLength( *this ); if( trackDelay == 0.0 ) { aList.emplace_back( _( "Routed Length" ), aFrame->MessageTextFromValue( trackLen ) ); if( lenPadToDie != 0 ) { msg = aFrame->MessageTextFromValue( lenPadToDie ); aList.emplace_back( _( "Pad To Die Length" ), msg ); msg = aFrame->MessageTextFromValue( trackLen + lenPadToDie ); aList.emplace_back( _( "Full Length" ), msg ); } } else { aList.emplace_back( _( "Routed Delay" ), aFrame->MessageTextFromValue( trackDelay, true, EDA_DATA_TYPE::TIME ) ); if( delayPadToDie != 0.0 ) { msg = aFrame->MessageTextFromValue( delayPadToDie, true, EDA_DATA_TYPE::TIME ); aList.emplace_back( _( "Pad To Die Delay" ), msg ); msg = aFrame->MessageTextFromValue( trackDelay + delayPadToDie, true, EDA_DATA_TYPE::TIME ); aList.emplace_back( _( "Full Delay" ), msg ); } } } SHAPE_POLY_SET copper; TransformShapeToPolySet( copper, GetLayer(), 0, ARC_LOW_DEF, ERROR_INSIDE ); aList.emplace_back( _( "Copper Area" ), aFrame->MessageTextFromValue( copper.Area(), true, EDA_DATA_TYPE::AREA ) ); wxString source; int clearance = GetOwnClearance( GetLayer(), &source ); aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ), aFrame->MessageTextFromValue( clearance ) ), wxString::Format( _( "(from %s)" ), source ) ); MINOPTMAX constraintValue = GetWidthConstraint( &source ); msg = aFrame->MessageTextFromMinOptMax( constraintValue ); if( !msg.IsEmpty() ) { aList.emplace_back( wxString::Format( _( "Width Constraints: %s" ), msg ), wxString::Format( _( "(from %s)" ), source ) ); } } void PCB_VIA::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { wxString msg; switch( GetViaType() ) { case VIATYPE::MICROVIA: msg = _( "Micro Via" ); break; case VIATYPE::BLIND_BURIED: msg = _( "Blind/Buried Via" ); break; case VIATYPE::THROUGH: msg = _( "Through Via" ); break; default: msg = _( "Via" ); break; } aList.emplace_back( _( "Type" ), msg ); GetMsgPanelInfoBase_Common( aFrame, aList ); aList.emplace_back( _( "Layer" ), layerMaskDescribe() ); // TODO(JE) padstacks aList.emplace_back( _( "Diameter" ), aFrame->MessageTextFromValue( GetWidth( PADSTACK::ALL_LAYERS ) ) ); aList.emplace_back( _( "Hole" ), aFrame->MessageTextFromValue( GetDrillValue() ) ); wxString source; int clearance = GetOwnClearance( GetLayer(), &source ); aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ), aFrame->MessageTextFromValue( clearance ) ), wxString::Format( _( "(from %s)" ), source ) ); int minAnnulus = GetMinAnnulus( GetLayer(), &source ); aList.emplace_back( wxString::Format( _( "Min Annular Width: %s" ), aFrame->MessageTextFromValue( minAnnulus ) ), wxString::Format( _( "(from %s)" ), source ) ); } void PCB_TRACK::GetMsgPanelInfoBase_Common( EDA_DRAW_FRAME* aFrame, std::vector& aList ) const { aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) ); aList.emplace_back( _( "Resolved Netclass" ), UnescapeString( GetEffectiveNetClass()->GetHumanReadableName() ) ); #if 0 // Enable for debugging if( GetBoard() ) aList.emplace_back( _( "NetCode" ), fmt::format( "{}", GetNetCode() ) ); aList.emplace_back( wxT( "Flags" ), fmt::format( "#08X", m_flags ) ); aList.emplace_back( wxT( "Start pos" ), fmt::format( "{} {}", m_Start.x, m_Start.y ) ); aList.emplace_back( wxT( "End pos" ), fmt::format( "{} {}", m_End.x, m_End.y ) ); #endif if( aFrame->GetName() == PCB_EDIT_FRAME_NAME && IsLocked() ) aList.emplace_back( _( "Status" ), _( "Locked" ) ); } wxString PCB_VIA::layerMaskDescribe() const { const BOARD* board = GetBoard(); PCB_LAYER_ID top_layer; PCB_LAYER_ID bottom_layer; LayerPair( &top_layer, &bottom_layer ); return board->GetLayerName( top_layer ) + wxT( " - " ) + board->GetLayerName( bottom_layer ); } bool PCB_TRACK::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { return TestSegmentHit( aPosition, m_Start, m_End, aAccuracy + ( m_width / 2 ) ); } bool PCB_ARC::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { double max_dist = aAccuracy + ( GetWidth() / 2.0 ); // Short-circuit common cases where the arc is connected to a track or via at an endpoint if( GetStart().Distance( aPosition ) <= max_dist || GetEnd().Distance( aPosition ) <= max_dist ) { return true; } VECTOR2L center = GetPosition(); VECTOR2L relpos = aPosition - center; int64_t dist = relpos.EuclideanNorm(); double radius = GetRadius(); if( std::abs( dist - radius ) > max_dist ) return false; EDA_ANGLE arc_angle = GetAngle(); EDA_ANGLE arc_angle_start = GetArcAngleStart(); // Always 0.0 ... 360 deg EDA_ANGLE arc_hittest( relpos ); // Calculate relative angle between the starting point of the arc, and the test point arc_hittest -= arc_angle_start; // Normalise arc_hittest between 0 ... 360 deg arc_hittest.Normalize(); if( arc_angle < ANGLE_0 ) return arc_hittest >= ANGLE_360 + arc_angle; return arc_hittest <= arc_angle; } bool PCB_VIA::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { bool hit = false; Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { if( hit ) return; int max_dist = aAccuracy + ( GetWidth( aLayer ) / 2 ); // rel_pos is aPosition relative to m_Start (or the center of the via) VECTOR2D rel_pos = aPosition - m_Start; double dist = rel_pos.x * rel_pos.x + rel_pos.y * rel_pos.y; if( dist <= static_cast( max_dist ) * max_dist ) hit = true; } ); return hit; } bool PCB_TRACK::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { BOX2I arect = aRect; arect.Inflate( aAccuracy ); if( aContained ) return arect.Contains( GetStart() ) && arect.Contains( GetEnd() ); else return arect.Intersects( GetStart(), GetEnd() ); } bool PCB_ARC::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { BOX2I arect = aRect; arect.Inflate( aAccuracy ); BOX2I box( GetStart() ); box.Merge( GetMid() ); box.Merge( GetEnd() ); box.Inflate( GetWidth() / 2 ); if( aContained ) return arect.Contains( box ); else return arect.Intersects( box ); } bool PCB_VIA::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { BOX2I arect = aRect; arect.Inflate( aAccuracy ); bool hit = false; Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { if( hit ) return; BOX2I box( GetStart() ); box.Inflate( GetWidth( aLayer ) / 2 ); if( aContained ) hit = arect.Contains( box ); else hit = arect.IntersectsCircle( GetStart(), GetWidth( aLayer ) / 2 ); } ); return hit; } bool PCB_TRACK::HitTest( const SHAPE_LINE_CHAIN& aPoly, bool aContained ) const { return KIGEOM::ShapeHitTest( aPoly, *GetEffectiveShape(), aContained ); } wxString PCB_TRACK::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const { return wxString::Format( Type() == PCB_ARC_T ? _("Track (arc) %s on %s, length %s" ) : _("Track %s on %s, length %s" ), GetNetnameMsg(), GetLayerName(), aUnitsProvider->MessageTextFromValue( GetLength() ) ); } BITMAPS PCB_TRACK::GetMenuImage() const { return BITMAPS::add_tracks; } void PCB_TRACK::swapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_TRACE_T ); std::swap( *((PCB_TRACK*) this), *((PCB_TRACK*) aImage) ); } void PCB_ARC::swapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_ARC_T ); std::swap( *this, *static_cast( aImage ) ); } void PCB_VIA::swapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_VIA_T ); std::swap( *((PCB_VIA*) this), *((PCB_VIA*) aImage) ); } VECTOR2I PCB_ARC::GetPosition() const { VECTOR2I center = CalcArcCenter( m_Start, m_Mid, m_End ); return center; } double PCB_ARC::GetRadius() const { auto center = CalcArcCenter( m_Start, m_Mid , m_End ); return std::min( center.Distance( m_Start ), (double) INT_MAX / 2.0 ); } EDA_ANGLE PCB_ARC::GetAngle() const { VECTOR2D center = GetPosition(); EDA_ANGLE angle1 = EDA_ANGLE( m_Mid - center ) - EDA_ANGLE( m_Start - center ); EDA_ANGLE angle2 = EDA_ANGLE( m_End - center ) - EDA_ANGLE( m_Mid - center ); return angle1.Normalize180() + angle2.Normalize180(); } EDA_ANGLE PCB_ARC::GetArcAngleStart() const { VECTOR2D pos( GetPosition() ); EDA_ANGLE angleStart( m_Start - pos ); return angleStart.Normalize(); } // Note: used in python tests. Ignore CLion's claim that it's unused.... EDA_ANGLE PCB_ARC::GetArcAngleEnd() const { VECTOR2D pos( GetPosition() ); EDA_ANGLE angleEnd( m_End - pos ); return angleEnd.Normalize(); } bool PCB_ARC::IsDegenerated( int aThreshold ) const { // We have lots of code that will blow up if the radius overflows an int. if( GetRadius() >= (double)INT_MAX/2.0 ) return true; // Too small arcs cannot be really handled: arc center (and arc radius) // cannot be safely computed if the distance between mid and end points // is too small (a few internal units) // len of both segments must be < aThreshold to be a very small degenerated arc return ( GetMid() - GetStart() ).EuclideanNorm() < aThreshold && ( GetMid() - GetEnd() ).EuclideanNorm() < aThreshold; } bool PCB_TRACK::cmp_tracks::operator() ( const PCB_TRACK* a, const PCB_TRACK* b ) const { if( a->GetNetCode() != b->GetNetCode() ) return a->GetNetCode() < b->GetNetCode(); if( a->GetLayer() != b->GetLayer() ) return a->GetLayer() < b->GetLayer(); if( a->Type() != b->Type() ) return a->Type() < b->Type(); if( a->m_Uuid != b->m_Uuid ) return a->m_Uuid < b->m_Uuid; return a < b; } std::shared_ptr PCB_TRACK::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const { int width = m_width; if( IsSolderMaskLayer( aLayer ) ) width += 2 * GetSolderMaskExpansion(); return std::make_shared( m_Start, m_End, width ); } std::shared_ptr PCB_VIA::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const { if( aFlash == FLASHING::ALWAYS_FLASHED || ( aFlash == FLASHING::DEFAULT && FlashLayer( aLayer ) ) ) { int width = 0; if( aLayer == UNDEFINED_LAYER ) { Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID layer ) { width = std::max( width, GetWidth( layer ) ); } ); width /= 2; } else { PCB_LAYER_ID cuLayer = m_padStack.EffectiveLayerFor( aLayer ); width = GetWidth( cuLayer ) / 2; } return std::make_shared( m_Start, width ); } else { return std::make_shared( m_Start, GetDrillValue() / 2 ); } } std::shared_ptr PCB_ARC::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const { int width = GetWidth(); if( IsSolderMaskLayer( aLayer ) ) width += 2 * GetSolderMaskExpansion(); SHAPE_ARC arc( GetStart(), GetMid(), GetEnd(), width ); if( arc.IsEffectiveLine() ) return std::make_shared( GetStart(), GetEnd(), width ); return std::make_shared( arc ); } void PCB_TRACK::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aError, ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const { wxASSERT_MSG( !ignoreLineWidth, wxT( "IgnoreLineWidth has no meaning for tracks." ) ); switch( Type() ) { case PCB_VIA_T: { int radius = ( static_cast( this )->GetWidth( aLayer ) / 2 ) + aClearance; TransformCircleToPolygon( aBuffer, m_Start, radius, aError, aErrorLoc ); break; } case PCB_ARC_T: { const PCB_ARC* arc = static_cast( this ); int width = m_width + ( 2 * aClearance ); if( IsSolderMaskLayer( aLayer ) ) width += 2 * GetSolderMaskExpansion(); TransformArcToPolygon( aBuffer, arc->GetStart(), arc->GetMid(), arc->GetEnd(), width, aError, aErrorLoc ); break; } default: { int width = m_width + ( 2 * aClearance ); if( IsSolderMaskLayer( aLayer ) ) width += 2 * GetSolderMaskExpansion(); TransformOvalToPolygon( aBuffer, m_Start, m_End, width, aError, aErrorLoc ); break; } } } static struct TRACK_VIA_DESC { TRACK_VIA_DESC() { // clang-format off: the suggestion is less readable ENUM_MAP::Instance() .Undefined( VIATYPE::NOT_DEFINED ) .Map( VIATYPE::THROUGH, _HKI( "Through" ) ) .Map( VIATYPE::BLIND_BURIED, _HKI( "Blind/buried" ) ) .Map( VIATYPE::MICROVIA, _HKI( "Micro" ) ); ENUM_MAP::Instance() .Undefined( TENTING_MODE::FROM_RULES ) .Map( TENTING_MODE::FROM_RULES, _HKI( "From design rules" ) ) .Map( TENTING_MODE::TENTED, _HKI( "Tented" ) ) .Map( TENTING_MODE::NOT_TENTED, _HKI( "Not tented" ) ); ENUM_MAP::Instance() .Undefined( COVERING_MODE::FROM_RULES ) .Map( COVERING_MODE::FROM_RULES, _HKI( "From design rules" ) ) .Map( COVERING_MODE::COVERED, _HKI( "Covered" ) ) .Map( COVERING_MODE::NOT_COVERED, _HKI( "Not covered" ) ); ENUM_MAP::Instance() .Undefined( PLUGGING_MODE::FROM_RULES ) .Map( PLUGGING_MODE::FROM_RULES, _HKI( "From design rules" ) ) .Map( PLUGGING_MODE::PLUGGED, _HKI( "Plugged" ) ) .Map( PLUGGING_MODE::NOT_PLUGGED, _HKI( "Not plugged" ) ); ENUM_MAP::Instance() .Undefined( CAPPING_MODE::FROM_RULES ) .Map( CAPPING_MODE::FROM_RULES, _HKI( "From design rules" ) ) .Map( CAPPING_MODE::CAPPED, _HKI( "Capped" ) ) .Map( CAPPING_MODE::NOT_CAPPED, _HKI( "Not capped" ) ); ENUM_MAP::Instance() .Undefined( FILLING_MODE::FROM_RULES ) .Map( FILLING_MODE::FROM_RULES, _HKI( "From design rules" ) ) .Map( FILLING_MODE::FILLED, _HKI( "Filled" ) ) .Map( FILLING_MODE::NOT_FILLED, _HKI( "Not filled" ) ); // clang-format on: the suggestion is less readable ENUM_MAP& layerEnum = ENUM_MAP::Instance(); if( layerEnum.Choices().GetCount() == 0 ) { layerEnum.Undefined( UNDEFINED_LAYER ); for( PCB_LAYER_ID layer : LSET::AllLayersMask() ) layerEnum.Map( layer, LSET::Name( layer ) ); } PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); // Track REGISTER_TYPE( PCB_TRACK ); propMgr.InheritsAfter( TYPE_HASH( PCB_TRACK ), TYPE_HASH( BOARD_CONNECTED_ITEM ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Width" ), &PCB_TRACK::SetWidth, &PCB_TRACK::GetWidth, PROPERTY_DISPLAY::PT_SIZE ) ); propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position X" ), new PROPERTY( _HKI( "Start X" ), &PCB_TRACK::SetStartX, &PCB_TRACK::GetStartX, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_X_COORD) ); propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position Y" ), new PROPERTY( _HKI( "Start Y" ), &PCB_TRACK::SetStartY, &PCB_TRACK::GetStartY, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_Y_COORD ) ); propMgr.AddProperty( new PROPERTY( _HKI( "End X" ), &PCB_TRACK::SetEndX, &PCB_TRACK::GetEndX, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_X_COORD) ); propMgr.AddProperty( new PROPERTY( _HKI( "End Y" ), &PCB_TRACK::SetEndY, &PCB_TRACK::GetEndY, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_Y_COORD) ); const wxString groupTechLayers = _HKI( "Technical Layers" ); auto isExternalLayerTrack = []( INSPECTABLE* aItem ) { if( PCB_TRACK* track = dynamic_cast( aItem ) ) return IsExternalCopperLayer( track->GetLayer() ); return false; }; propMgr.AddProperty( new PROPERTY( _HKI( "Soldermask" ), &PCB_TRACK::SetHasSolderMask, &PCB_TRACK::HasSolderMask ), groupTechLayers ) .SetAvailableFunc( isExternalLayerTrack ); propMgr.AddProperty( new PROPERTY>( _HKI( "Soldermask Margin Override" ), &PCB_TRACK::SetLocalSolderMaskMargin, &PCB_TRACK::GetLocalSolderMaskMargin, PROPERTY_DISPLAY::PT_SIZE ), groupTechLayers ) .SetAvailableFunc( isExternalLayerTrack ); // Arc REGISTER_TYPE( PCB_ARC ); propMgr.InheritsAfter( TYPE_HASH( PCB_ARC ), TYPE_HASH( PCB_TRACK ) ); // Via REGISTER_TYPE( PCB_VIA ); propMgr.InheritsAfter( TYPE_HASH( PCB_VIA ), TYPE_HASH( BOARD_CONNECTED_ITEM ) ); // TODO test drill, use getdrillvalue? const wxString groupVia = _HKI( "Via Properties" ); propMgr.Mask( TYPE_HASH( PCB_VIA ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ) ); // clang-format off: the suggestion is less readable propMgr.AddProperty( new PROPERTY( _HKI( "Diameter" ), &PCB_VIA::SetFrontWidth, &PCB_VIA::GetFrontWidth, PROPERTY_DISPLAY::PT_SIZE ), groupVia ); propMgr.AddProperty( new PROPERTY( _HKI( "Hole" ), &PCB_VIA::SetDrill, &PCB_VIA::GetDrillValue, PROPERTY_DISPLAY::PT_SIZE ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Layer Top" ), &PCB_VIA::SetTopLayer, &PCB_VIA::GetLayer ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Layer Bottom" ), &PCB_VIA::SetBottomLayer, &PCB_VIA::BottomLayer ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Via Type" ), &PCB_VIA::SetViaType, &PCB_VIA::GetViaType ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Front tenting" ), &PCB_VIA::SetFrontTentingMode, &PCB_VIA::GetFrontTentingMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Back tenting" ), &PCB_VIA::SetBackTentingMode, &PCB_VIA::GetBackTentingMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Front covering" ), &PCB_VIA::SetFrontCoveringMode, &PCB_VIA::GetFrontCoveringMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Back covering" ), &PCB_VIA::SetBackCoveringMode, &PCB_VIA::GetBackCoveringMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Front plugging" ), &PCB_VIA::SetFrontPluggingMode, &PCB_VIA::GetFrontPluggingMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Back plugging" ), &PCB_VIA::SetBackPluggingMode, &PCB_VIA::GetBackPluggingMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Capping" ), &PCB_VIA::SetCappingMode, &PCB_VIA::GetCappingMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Filling" ), &PCB_VIA::SetFillingMode, &PCB_VIA::GetFillingMode ), groupVia ); // clang-format on: the suggestion is less readable } } _TRACK_VIA_DESC; ENUM_TO_WXANY( VIATYPE ); ENUM_TO_WXANY( TENTING_MODE ); ENUM_TO_WXANY( COVERING_MODE ); ENUM_TO_WXANY( PLUGGING_MODE ); ENUM_TO_WXANY( CAPPING_MODE ); ENUM_TO_WXANY( FILLING_MODE );