/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2013 CERN * @author Maciej Suminski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file vbo_container.cpp * @brief Class to store VBO_ITEMs. */ #include #include #include #include #ifdef __WXDEBUG__ #include #endif /* __WXDEBUG__ */ using namespace KiGfx; VBO_CONTAINER::VBO_CONTAINER( unsigned int aSize ) : m_freeSpace( aSize ), m_currentSize( aSize ), m_initialSize( aSize ), m_transform( NULL ), m_failed( false ) { // By default no shader is used m_shader[0] = 0; m_vertices = static_cast( malloc( aSize * sizeof( VBO_VERTEX ) ) ); // In the beginning there is only free space m_freeChunks.insert( Chunk( aSize, 0 ) ); } VBO_CONTAINER::~VBO_CONTAINER() { free( m_vertices ); } void VBO_CONTAINER::StartItem( VBO_ITEM* aItem ) { m_item = aItem; m_itemSize = aItem->GetSize(); m_chunkSize = m_itemSize; if( m_itemSize == 0 ) m_items.insert( m_item ); // The item was not stored before else m_chunkOffset = m_item->GetOffset(); } void VBO_CONTAINER::EndItem() { if( m_itemSize < m_chunkSize ) { // Add the not used memory back to the pool m_freeChunks.insert( Chunk( m_chunkSize - m_itemSize, m_chunkOffset + m_itemSize ) ); m_freeSpace += ( m_chunkSize - m_itemSize ); } m_item = NULL; } void VBO_CONTAINER::Add( const VBO_VERTEX* aVertex, unsigned int aSize ) { // Pointer to the vertex that we are currently adding VBO_VERTEX* vertexPtr = allocate( aSize ); if( vertexPtr == NULL ) return; for( unsigned int i = 0; i < aSize; ++i ) { // Modify the vertex according to the currently used transformations if( m_transform != NULL ) { // Apply transformations glm::vec4 vertex( aVertex[i].x, aVertex[i].y, aVertex[i].z, 1.0f ); vertex = *m_transform * vertex; // Replace only coordinates, leave color as it is vertexPtr->x = vertex.x; vertexPtr->y = vertex.y; vertexPtr->z = vertex.z; } else { // Simply copy coordinates vertexPtr->x = aVertex[i].x; vertexPtr->y = aVertex[i].y; vertexPtr->z = aVertex[i].z; } // Apply currently used color vertexPtr->r = m_color[0]; vertexPtr->g = m_color[1]; vertexPtr->b = m_color[2]; vertexPtr->a = m_color[3]; // Apply currently used shader for( unsigned int j = 0; j < VBO_ITEM::ShaderStride; ++j ) { vertexPtr->shader[j] = m_shader[j]; } vertexPtr++; } } void VBO_CONTAINER::Clear() { // Change size to the default one m_vertices = static_cast( realloc( m_vertices, m_initialSize * sizeof( VBO_VERTEX ) ) ); // Set the size of all the stored VERTEX_ITEMs to 0, so it is clear that they are not held // in the container anymore Items::iterator it; for( it = m_items.begin(); it != m_items.end(); ++it ) { ( *it )->setSize( 0 ); } m_items.clear(); // Reset state variables m_transform = NULL; m_failed = false; // By default no shader is used m_shader[0] = 0; // In the beginning there is only free space m_freeSpace = m_initialSize; m_currentSize = m_initialSize; m_freeChunks.clear(); m_freeChunks.insert( Chunk( m_freeSpace, 0 ) ); } void VBO_CONTAINER::Free( VBO_ITEM* aItem ) { freeItem( aItem ); // Dynamic memory freeing, there is no point in holding // a large amount of memory when there is no use for it if( m_freeSpace > ( m_currentSize / 2 ) && m_currentSize > defaultInitSize ) { resizeContainer( m_currentSize / 2 ); } } VBO_VERTEX* VBO_CONTAINER::GetAllVertices() const { return m_vertices; } VBO_VERTEX* VBO_CONTAINER::GetVertices( const VBO_ITEM* aItem ) const { int offset = aItem->GetOffset(); return &m_vertices[offset]; } VBO_VERTEX* VBO_CONTAINER::allocate( unsigned int aSize ) { wxASSERT( m_item != NULL ); if( m_failed ) return NULL; if( m_itemSize + aSize > m_chunkSize ) { // There is not enough space in the currently reserved chunk, so we have to resize it // Reserve a bigger memory chunk for the current item m_chunkSize = std::max( ( 2 * m_itemSize ) + aSize, (unsigned) 3 ); // Save the current size before reallocating m_chunkOffset = reallocate( m_chunkSize ); if( m_chunkOffset > m_currentSize ) { m_failed = true; return NULL; } } VBO_VERTEX* reserved = &m_vertices[m_chunkOffset + m_itemSize]; m_itemSize += aSize; m_item->setSize( m_itemSize ); return reserved; } unsigned int VBO_CONTAINER::reallocate( unsigned int aSize ) { // Is there enough space to store vertices? if( m_freeSpace < aSize ) { bool result; // Would it be enough to double the current space? if( aSize < m_freeSpace + m_currentSize ) { // Yes: exponential growing result = resizeContainer( m_currentSize * 2 ); } else { // No: grow to the nearest bigger power of 2 result = resizeContainer( getPowerOf2( m_currentSize * 2 + aSize ) ); } if( !result ) return UINT_MAX; } // Look for the free space of at least given size FreeChunkMap::iterator newChunk = m_freeChunks.lower_bound( aSize ); if( newChunk == m_freeChunks.end() ) { // In the case when there is enough space to store the vertices, // but the free space is not continous we should defragment the container if( !defragment() ) return UINT_MAX; // Update the current offset m_chunkOffset = m_item->GetOffset(); // We can take the first free chunk, as there is only one after defragmentation // and we can be sure that it provides enough space to store the object newChunk = m_freeChunks.begin(); } // Parameters of the allocated cuhnk unsigned int chunkSize = newChunk->first; unsigned int chunkOffset = newChunk->second; wxASSERT( chunkSize >= aSize ); wxASSERT( chunkOffset < m_currentSize ); // Check if the item was previously stored in the container if( m_itemSize > 0 ) { // The item was reallocated, so we have to copy all the old data to the new place memcpy( &m_vertices[chunkOffset], &m_vertices[m_chunkOffset], m_itemSize * VBO_ITEM::VertByteSize ); // Free the space previously used by the chunk m_freeChunks.insert( Chunk( m_itemSize, m_chunkOffset ) ); m_freeSpace += m_itemSize; } // Remove the allocated chunk from the free space pool m_freeChunks.erase( newChunk ); m_freeSpace -= chunkSize; // If there is some space left, return it to the pool - add an entry for it if( chunkSize > aSize ) { m_freeChunks.insert( Chunk( chunkSize - aSize, chunkOffset + aSize ) ); m_freeSpace += chunkSize - aSize; } m_item->setOffset( chunkOffset ); return chunkOffset; } bool VBO_CONTAINER::defragment( VBO_VERTEX* aTarget ) { if( aTarget == NULL ) { // No target was specified, so we have to reallocate our own space aTarget = static_cast( malloc( m_currentSize * sizeof( VBO_VERTEX ) ) ); if( aTarget == NULL ) { wxLogError( wxT( "Run out of memory" ) ); return false; } } int newOffset = 0; Items::iterator it, it_end; for( it = m_items.begin(), it_end = m_items.end(); it != it_end; ++it ) { VBO_ITEM* item = *it; int itemOffset = item->GetOffset(); int itemSize = item->GetSize(); // Move an item to the new container memcpy( &aTarget[newOffset], &m_vertices[itemOffset], itemSize * VBO_ITEM::VertByteSize ); // Update its offset item->setOffset( newOffset ); // Move to the next free space newOffset += itemSize; } free( m_vertices ); m_vertices = aTarget; // Now there is only one big chunk of free memory m_freeChunks.clear(); m_freeChunks.insert( Chunk( m_freeSpace, reservedSpace() ) ); return true; } void VBO_CONTAINER::mergeFreeChunks() { if( m_freeChunks.size() < 2 ) // There are no chunks that can be merged return; // Reversed free chunks map - this one stores chunk size with its offset as the key std::list freeChunks; FreeChunkMap::const_iterator it, it_end; for( it = m_freeChunks.begin(), it_end = m_freeChunks.end(); it != it_end; ++it ) { freeChunks.push_back( std::make_pair( it->second, it->first ) ); } m_freeChunks.clear(); freeChunks.sort(); std::list::const_iterator itf, itf_end; unsigned int offset = freeChunks.front().first; unsigned int size = freeChunks.front().second; freeChunks.pop_front(); for( itf = freeChunks.begin(), itf_end = freeChunks.end(); itf != itf_end; ++itf ) { if( itf->first == offset + size ) { // These chunks can be merged, so just increase the current chunk size and go on size += itf->second; } else { // These chunks cannot be merged // So store the previous one m_freeChunks.insert( std::make_pair( size, offset ) ); // and let's check the next chunk offset = itf->first; size = itf->second; } } // Add the last one m_freeChunks.insert( std::make_pair( size, offset ) ); } bool VBO_CONTAINER::resizeContainer( unsigned int aNewSize ) { VBO_VERTEX* newContainer; if( aNewSize < m_currentSize ) { // Shrinking container // Sanity check, no shrinking if we cannot fit all the data if( reservedSpace() > aNewSize ) return false; newContainer = static_cast( malloc( aNewSize * sizeof( VBO_VERTEX ) ) ); if( newContainer == NULL ) { wxLogError( wxT( "Run out of memory" ) ); return false; } // Defragment directly to the new, smaller container defragment( newContainer ); // We have to correct freeChunks after defragmentation m_freeChunks.clear(); m_freeChunks.insert( Chunk( aNewSize - reservedSpace(), reservedSpace() ) ); } else { // Enlarging container newContainer = static_cast( realloc( m_vertices, aNewSize * sizeof( VBO_VERTEX ) ) ); if( newContainer == NULL ) { wxLogError( wxT( "Run out of memory" ) ); return false; } // Add an entry for the new memory chunk at the end of the container m_freeChunks.insert( Chunk( aNewSize - m_currentSize, m_currentSize ) ); } m_vertices = newContainer; m_freeSpace += ( aNewSize - m_currentSize ); m_currentSize = aNewSize; return true; } void VBO_CONTAINER::freeItem( VBO_ITEM* aItem ) { int size = aItem->GetSize(); int offset = aItem->GetOffset(); m_freeChunks.insert( Chunk( size, offset ) ); m_freeSpace += size; m_items.erase( aItem ); // Item size is set to 0, so it means that it is not stored in the container aItem->setSize( 0 ); } void VBO_CONTAINER::test() const { unsigned int freeSpace = 0; FreeChunkMap::const_iterator it, it_end; // Check if the amount of free memory stored as chunks is the same as reported by m_freeSpace for( it = m_freeChunks.begin(), it_end = m_freeChunks.end(); it != it_end; ++it ) freeSpace += it->first; wxASSERT( freeSpace == m_freeSpace ); }