/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2024 Jon Evans * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #ifndef KICAD_PADSTACK_H #define KICAD_PADSTACK_H #include #include #include #include #include #include #include #include #include #include class BOARD_ITEM; class PCB_SHAPE; namespace kiapi::board::types { class PadStack; class PadStackLayer; } /** * The set of pad shapes, used with PAD::{Set,Get}Shape() * * --> DO NOT REORDER, PCB_IO_KICAD_LEGACY is dependent on the integer values <-- */ enum class PAD_SHAPE : int { CIRCLE, RECTANGLE, // do not use just RECT: it collides in a header on MSYS2 OVAL, TRAPEZOID, ROUNDRECT, // Rectangle with a chamfered corner ( and with rounded other corners). CHAMFERED_RECT, CUSTOM // A shape defined by user, using a set of basic shapes // (thick segments, circles, arcs, polygons). }; /** * The set of pad drill shapes, used with PAD::{Set,Get}DrillShape() */ enum class PAD_DRILL_SHAPE { UNDEFINED, CIRCLE, OBLONG, }; /** * The set of pad shapes, used with PAD::{Set,Get}Attribute(). * * The double name is for convenience of Python devs */ enum class PAD_ATTRIB { PTH, ///< Plated through hole pad SMD, ///< Smd pad, appears on the solder paste layer (default) CONN, ///< Like smd, does not appear on the solder paste layer (default) ///< Note: also has a special attribute in Gerber X files ///< Used for edgecard connectors for instance NPTH, ///< like PAD_PTH, but not plated ///< mechanical use only, no connection allowed }; /** * The set of pad properties used in Gerber files (Draw files, and P&P files) * to define some properties in fabrication or test files. Also used by * DRC to check some properties. */ enum class PAD_PROP { NONE, ///< no special fabrication property BGA, ///< Smd pad, used in BGA footprints FIDUCIAL_GLBL, ///< a fiducial (usually a smd) for the full board FIDUCIAL_LOCAL, ///< a fiducial (usually a smd) local to the parent footprint TESTPOINT, ///< a test point pad HEATSINK, ///< a pad used as heat sink, usually in SMD footprints CASTELLATED, ///< a pad with a castellated through hole MECHANICAL, ///< a pad used for mechanical support PRESSFIT ///< a PTH with a hole diameter with tight tolerances for press fit pin }; /** * A PADSTACK defines the characteristics of a single or multi-layer pad, in the IPC sense of * the word. This means that a PCB_PAD has a padstack, but also a PCB_VIA. The padstack for * a pad defines its geometry on copper, soldermask, and paste layers, as well as any drilling * or milling associated with the pad (round or slot hole, back-drilling, etc). Padstacks also * define thermal relief settings for all copper layers, clearance overrides for all copper * layers, and potentially other properties in the future. In other words, the padstack defines * most of the geometric features of a pad on all layers. It does not define electrical properties * or other metadata. * * For padstacks that do not vary between layers, F_Cu is used as the copper layer to store all * padstack properties. */ class PADSTACK : public SERIALIZABLE { public: ///! Padstack type, mostly for IPC-7351 naming and attributes ///! Note that TYPE::MOUNTING is probably not currently supported by KiCad enum class TYPE { NORMAL, ///< Padstack for a footprint pad VIA, ///< Padstack for a via MOUNTING ///< A mounting hole (plated or unplated, not associated with a footprint) }; ///! Copper geometry mode: controls how many unique copper layer shapes this padstack has enum class MODE { NORMAL, ///< Shape is the same on all layers FRONT_INNER_BACK, ///< Up to three shapes can be defined (F_Cu, inner copper layers, B_Cu) CUSTOM ///< Shapes can be defined on arbitrary layers }; ///! Temporary layer identifier to identify code that is not padstack-aware static constexpr PCB_LAYER_ID ALL_LAYERS = F_Cu; ///! The layer identifier to use for "inner layers" on top/inner/bottom padstacks static constexpr PCB_LAYER_ID INNER_LAYERS = In1_Cu; ///! Whether or not to remove the copper shape for unconnected layers enum class UNCONNECTED_LAYER_MODE { KEEP_ALL, START_END_ONLY, REMOVE_ALL, REMOVE_EXCEPT_START_AND_END }; enum class CUSTOM_SHAPE_ZONE_MODE { OUTLINE, CONVEXHULL }; ///! The set of properties that define a pad's shape on a given layer struct SHAPE_PROPS { PAD_SHAPE shape; ///< Shape of the pad PAD_SHAPE anchor_shape; ///< Shape of the anchor when shape == PAD_SHAPE::CUSTOM VECTOR2I size; ///< Size of the shape, or of the anchor pad for custom shape pads /* * Most of the time the hole is the center of the shape (m_Offset = 0). But some designers * use oblong/rect pads with a hole moved to one of the oblong/rect pad shape ends. * In all cases the hole is at the pad position. This offset is from the hole to the center * of the pad shape (ie: the copper area around the hole). * ShapePos() returns the board shape position according to the offset and the pad rotation. */ VECTOR2I offset; ///< Offset of the shape center from the pad center double round_rect_corner_radius; double round_rect_radius_ratio; double chamfered_rect_ratio; ///< Size of chamfer: ratio of smallest of X,Y size int chamfered_rect_positions; ///< @see RECT_CHAMFER_POSITIONS /** * Delta for PAD_SHAPE::TRAPEZOID; half the delta squeezes one end and half expands the * other. It is only valid to have a single axis be non-zero. */ VECTOR2I trapezoid_delta_size; SHAPE_PROPS(); bool operator==( const SHAPE_PROPS& aOther ) const; }; /** * The features of a padstack that can vary between copper layers * All parameters are optional; leaving them un-set means "use parent/rule defaults" * Pad clearances, margins, etc. exist in a hierarchy. If a given level is specified then * the remaining levels are NOT consulted. * * LEVEL 1: (highest priority) local overrides (pad, footprint, etc.) * LEVEL 2: Rules * LEVEL 3: Accumulated local settings, netclass settings, & board design settings * * These are the LEVEL 1 settings (overrides) for a pad. */ struct COPPER_LAYER_PROPS { SHAPE_PROPS shape; std::optional zone_connection; std::optional thermal_spoke_width; std::optional thermal_spoke_angle; std::optional thermal_gap; std::optional clearance; /* * Editing definitions of primitives for custom pad shapes. In local coordinates relative * to m_Pos (NOT shapePos) at orient 0. */ std::vector> custom_shapes; bool operator==( const COPPER_LAYER_PROPS& aOther ) const; }; ///! The features of a padstack that can vary on outer layers. ///! All parameters are optional; leaving them un-set means "use parent/rule defaults" struct MASK_LAYER_PROPS { std::optional solder_mask_margin; std::optional solder_paste_margin; std::optional solder_paste_margin_ratio; std::optional has_solder_mask; ///< True if this outer layer has mask (is not tented) std::optional has_solder_paste; ///< True if this outer layer has solder paste std::optional has_covering; ///< True if the pad on this side should have covering std::optional has_plugging; ///< True if the drill hole should be plugged on this side bool operator==( const MASK_LAYER_PROPS& aOther ) const; }; ///! The properties of a padstack drill. Drill position is always the pad position (origin). struct DRILL_PROPS { VECTOR2I size; ///< Drill diameter (x == y) or slot dimensions (x != y) PAD_DRILL_SHAPE shape; PCB_LAYER_ID start; PCB_LAYER_ID end; std::optional is_filled; ///< True if the drill hole should be filled completely std::optional is_capped; ///< True if the drill hole should be capped bool operator==( const DRILL_PROPS& aOther ) const; }; public: PADSTACK( BOARD_ITEM* aParent ); virtual ~PADSTACK() = default; PADSTACK( const PADSTACK& aOther ); PADSTACK& operator=( const PADSTACK &aOther ); bool operator==( const PADSTACK& aOther ) const; bool operator!=( const PADSTACK& aOther ) const { return !operator==( aOther ); } void Serialize( google::protobuf::Any &aContainer ) const override; bool Deserialize( const google::protobuf::Any &aContainer ) override; /** * Compare two padstacks and return 0 if they are equal. * * @return less than 0 if left less than right, 0 if equal, or greater than 0 if left * greater than right. */ static int Compare( const PADSTACK* aPadstackRef, const PADSTACK* aPadstackCmp ); /** * Return a measure of how likely the other object is to represent the same * object. The scale runs from 0.0 (definitely different objects) to 1.0 (same) */ double Similarity( const PADSTACK& aOther ) const; const LSET& LayerSet() const { return m_layerSet; } LSET& LayerSet() { return m_layerSet; } void SetLayerSet( const LSET& aSet ) { m_layerSet = aSet; } /** * Flips the padstack layers in the case that the pad's parent footprint is flipped to the * other side of the board. */ void FlipLayers( int aCopperLayerCount ); PCB_LAYER_ID StartLayer() const; PCB_LAYER_ID EndLayer() const; MODE Mode() const { return m_mode; } void SetMode( MODE aMode ); ///! Returns the name of this padstack in IPC-7351 format wxString Name() const; EDA_ANGLE GetOrientation() const { return m_orientation; } void SetOrientation( EDA_ANGLE aAngle ) { m_orientation = aAngle; m_orientation.Normalize(); } DRILL_PROPS& Drill() { return m_drill; } const DRILL_PROPS& Drill() const { return m_drill; } DRILL_PROPS& SecondaryDrill() { return m_secondaryDrill; } const DRILL_PROPS& SecondaryDrill() const { return m_secondaryDrill; } UNCONNECTED_LAYER_MODE UnconnectedLayerMode() const { return m_unconnectedLayerMode; } void SetUnconnectedLayerMode( UNCONNECTED_LAYER_MODE aMode ) { m_unconnectedLayerMode = aMode; } COPPER_LAYER_PROPS& CopperLayer( PCB_LAYER_ID aLayer ); const COPPER_LAYER_PROPS& CopperLayer( PCB_LAYER_ID aLayer ) const; MASK_LAYER_PROPS& FrontOuterLayers() { return m_frontMaskProps; } const MASK_LAYER_PROPS& FrontOuterLayers() const { return m_frontMaskProps; } MASK_LAYER_PROPS& BackOuterLayers() { return m_backMaskProps; } const MASK_LAYER_PROPS& BackOuterLayers() const { return m_backMaskProps; } /** * Checks if this padstack is tented (covered in soldermask) on the given side * @param aSide is a front or back layer (any will do) * @return true or false if this padstack contains a tenting override on the given layer, or * std::nullopt if there is no override (meaning design rules should be used) */ std::optional IsTented( PCB_LAYER_ID aSide ) const; std::optional IsCovered( PCB_LAYER_ID aSide ) const; std::optional IsPlugged( PCB_LAYER_ID aSide ) const; std::optional IsCapped() const; std::optional IsFilled() const; CUSTOM_SHAPE_ZONE_MODE CustomShapeInZoneMode() const { return m_customShapeInZoneMode; } void SetCustomShapeInZoneMode( CUSTOM_SHAPE_ZONE_MODE aM ) { m_customShapeInZoneMode = aM; } /** * Runs the given callable for each active unique copper layer in this padstack, meaning * F_Cu for MODE::NORMAL; F_Cu, PADSTACK::INNER_LAYERS, and B_Cu for top/inner/bottom, * and an arbitrary set of layers for full-custom padstacks. * @param aMethod will be called once for each independent copper layer in the padstack */ void ForEachUniqueLayer( const std::function& aMethod ) const; std::vector UniqueLayers() const; /** * Determines which geometry layer should be used for the given input layer. * For example, for MODE::NORMAL, this will always be F_Cu, and for MODE::FRONT_INNER_BACK, * this will be one of F_Cu, PADSTACK::INNER_LAYERS, and B_Cu depending on the input * layer. * * @param aLayer is a valid board layer * @return the layer that the padstack's geometry is stored on for the given input layer */ PCB_LAYER_ID EffectiveLayerFor( PCB_LAYER_ID aLayer ) const; /** * Returns the set of layers that must be considered if checking one padstack against another. * For example, two normal padstacks will just return a set with ALL_LAYERS, but if one of them * is FRONT_INNER_BACK, there are three layers to check. */ LSET RelevantShapeLayers( const PADSTACK& aOther ) const; // The following section has convenience getters for the padstack properties on a given layer. PAD_SHAPE Shape( PCB_LAYER_ID aLayer ) const; void SetShape( PAD_SHAPE aShape, PCB_LAYER_ID aLayer ); // Setter rather than direct access to enforce only positive sizes void SetSize( const VECTOR2I& aSize, PCB_LAYER_ID aLayer ); const VECTOR2I& Size( PCB_LAYER_ID aLayer ) const; PAD_DRILL_SHAPE DrillShape() const; void SetDrillShape( PAD_DRILL_SHAPE aShape ); VECTOR2I& Offset( PCB_LAYER_ID aLayer ); const VECTOR2I& Offset( PCB_LAYER_ID aLayer ) const; PAD_SHAPE AnchorShape( PCB_LAYER_ID aLayer ) const; void SetAnchorShape( PAD_SHAPE aShape, PCB_LAYER_ID aLayer ); VECTOR2I& TrapezoidDeltaSize( PCB_LAYER_ID aLayer ); const VECTOR2I& TrapezoidDeltaSize( PCB_LAYER_ID aLayer ) const; double RoundRectRadiusRatio( PCB_LAYER_ID aLayer ) const; void SetRoundRectRadiusRatio( double aRatio, PCB_LAYER_ID aLayer ); int RoundRectRadius( PCB_LAYER_ID aLayer ) const; void SetRoundRectRadius( double aRadius, PCB_LAYER_ID aLayer ); double ChamferRatio( PCB_LAYER_ID aLayer ) const; void SetChamferRatio( double aRatio, PCB_LAYER_ID aLayer ); int& ChamferPositions( PCB_LAYER_ID aLayer ); const int& ChamferPositions( PCB_LAYER_ID aLayer ) const; void SetChamferPositions( int aPositions, PCB_LAYER_ID aLayer ); std::optional& Clearance( PCB_LAYER_ID aLayer = F_Cu ); const std::optional& Clearance( PCB_LAYER_ID aLayer = F_Cu ) const; std::optional& SolderMaskMargin( PCB_LAYER_ID aLayer = F_Cu ); const std::optional& SolderMaskMargin( PCB_LAYER_ID aLayer = F_Cu ) const; std::optional& SolderPasteMargin( PCB_LAYER_ID aLayer = F_Cu ); const std::optional& SolderPasteMargin( PCB_LAYER_ID aLayer = F_Cu ) const; std::optional& SolderPasteMarginRatio( PCB_LAYER_ID aLayer = F_Cu ); const std::optional& SolderPasteMarginRatio( PCB_LAYER_ID aLayer = F_Cu ) const; std::optional& ZoneConnection( PCB_LAYER_ID aLayer = F_Cu ); const std::optional& ZoneConnection( PCB_LAYER_ID aLayer = F_Cu ) const; std::optional& ThermalSpokeWidth( PCB_LAYER_ID aLayer = F_Cu ); const std::optional& ThermalSpokeWidth( PCB_LAYER_ID aLayer = F_Cu ) const; std::optional& ThermalGap( PCB_LAYER_ID aLayer = F_Cu ); const std::optional& ThermalGap( PCB_LAYER_ID aLayer = F_Cu ) const; EDA_ANGLE DefaultThermalSpokeAngleForShape( PCB_LAYER_ID aLayer = F_Cu ) const; EDA_ANGLE ThermalSpokeAngle( PCB_LAYER_ID aLayer = F_Cu ) const; void SetThermalSpokeAngle( EDA_ANGLE aAngle, PCB_LAYER_ID aLayer = F_Cu ); std::vector>& Primitives( PCB_LAYER_ID aLayer ); const std::vector>& Primitives( PCB_LAYER_ID aLayer ) const; /** * Adds a custom shape primitive to the padstack. * @param aShape is a shape to add as a custom primitive. Ownership is passed to this PADSTACK. * @param aLayer is the padstack layer to add to. */ void AddPrimitive( PCB_SHAPE* aShape, PCB_LAYER_ID aLayer ); /** * Appends a copy of each shape in the given list to this padstack's custom shape list * @param aPrimitivesList is a list of shapes to add copies of to this PADSTACK * @param aLayer is the padstack layer to add to. */ void AppendPrimitives( const std::vector>& aPrimitivesList, PCB_LAYER_ID aLayer ); /** * Clears the existing primitive list (freeing the owned shapes) and adds copies of the given * shapes to the padstack for the given layer. * @param aPrimitivesList is a list of shapes to add copies of to this PADSTACK * @param aLayer is the padstack layer to add to. */ void ReplacePrimitives( const std::vector>& aPrimitivesList, PCB_LAYER_ID aLayer ); void ClearPrimitives( PCB_LAYER_ID aLayer ); private: void packCopperLayer( PCB_LAYER_ID aLayer, kiapi::board::types::PadStack& aProto ) const; bool unpackCopperLayer( const kiapi::board::types::PadStackLayer& aProto ); ///! The BOARD_ITEM this PADSTACK belongs to; will be used as the parent for owned shapes BOARD_ITEM* m_parent; ///! The copper layer variation mode this padstack is in MODE m_mode; ///! The board layers that this padstack is active on LSET m_layerSet; ///! An override for the IPC-7351 padstack name wxString m_customName; ///! The rotation of the pad relative to an outer reference frame EDA_ANGLE m_orientation; ///! The properties applied to copper layers if they aren't overridden //COPPER_LAYER_PROPS m_defaultCopperProps; std::unordered_map m_copperProps; ///! The overrides applied to front outer technical layers MASK_LAYER_PROPS m_frontMaskProps; ///! The overrides applied to back outer technical layers MASK_LAYER_PROPS m_backMaskProps; UNCONNECTED_LAYER_MODE m_unconnectedLayerMode; /** * How to build the custom shape in zone, to create the clearance area: * CUSTOM_SHAPE_ZONE_MODE::OUTLINE = use pad shape * CUSTOM_SHAPE_ZONE_MODE::CONVEXHULL = use the convex hull of the pad shape */ CUSTOM_SHAPE_ZONE_MODE m_customShapeInZoneMode; ///! The primary drill parameters, which also define the start and end layers for through-hole ///! vias and pads (F_Cu to B_Cu for normal holes; a subset of layers for blind/buried vias) DRILL_PROPS m_drill; ///! Secondary drill, used to define back-drilling DRILL_PROPS m_secondaryDrill; }; #ifndef SWIG DECLARE_ENUM_TO_WXANY( PADSTACK::UNCONNECTED_LAYER_MODE ); #endif #endif //KICAD_PADSTACK_H