Add missing fast_float files

This commit is contained in:
Mark Roszko 2025-08-29 22:18:08 -04:00
parent b3de964eff
commit d5c0d040b4
13 changed files with 4689 additions and 0 deletions

93
thirdparty/fast_float/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,93 @@
cmake_minimum_required(VERSION 3.9)
project(fast_float VERSION 8.0.2 LANGUAGES CXX)
set(FASTFLOAT_CXX_STANDARD 11 CACHE STRING "the C++ standard to use for fastfloat")
set(CMAKE_CXX_STANDARD ${FASTFLOAT_CXX_STANDARD})
option(FASTFLOAT_TEST "Enable tests" OFF)
if(FASTFLOAT_TEST)
enable_testing()
add_subdirectory(tests)
else(FASTFLOAT_TEST)
message(STATUS "Tests are disabled. Set FASTFLOAT_TEST to ON to run tests.")
endif(FASTFLOAT_TEST)
option(FASTFLOAT_SANITIZE "Sanitize addresses" OFF)
if (NOT CMAKE_BUILD_TYPE)
if(FASTFLOAT_SANITIZE)
set(CMAKE_BUILD_TYPE Debug CACHE STRING "Choose the type of build." FORCE)
else()
message(STATUS "No build type selected, default to Release")
set(CMAKE_BUILD_TYPE Release CACHE STRING "Choose the type of build." FORCE)
endif()
endif()
option(FASTFLOAT_INSTALL "Enable install" ON)
if(FASTFLOAT_INSTALL)
include(GNUInstallDirs)
endif()
add_library(fast_float INTERFACE)
option(FASTFLOAT_BENCHMARKS "Enable benchmarks" OFF)
if(FASTFLOAT_BENCHMARKS)
add_subdirectory(benchmarks)
else(FASTFLOAT_BENCHMARKS)
message(STATUS "Benchmarks are disabled. Set FASTFLOAT_BENCHMARKS to ON to build benchmarks (assumes C++17).")
endif(FASTFLOAT_BENCHMARKS)
add_library(FastFloat::fast_float ALIAS fast_float)
target_include_directories(
fast_float
INTERFACE
$<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
)
target_compile_features(fast_float INTERFACE cxx_std_11)
if(FASTFLOAT_SANITIZE)
target_compile_options(fast_float INTERFACE -fsanitize=address -fno-omit-frame-pointer -fsanitize=undefined -fno-sanitize-recover=all)
target_link_libraries(fast_float INTERFACE -fsanitize=address -fno-omit-frame-pointer -fsanitize=undefined -fno-sanitize-recover=all)
if (CMAKE_COMPILER_IS_GNUCC)
target_link_libraries(fast_float INTERFACE -fuse-ld=gold)
endif()
endif()
include(CheckCXXCompilerFlag)
unset(FASTFLOAT_COMPILER_SUPPORTS_PERMISSIVE)
CHECK_CXX_COMPILER_FLAG(/permissive- FASTFLOAT_COMPILER_SUPPORTS_PERMISSIVE)
if(FASTFLOAT_COMPILER_SUPPORTS_PERMISSIVE)
target_compile_options(fast_float INTERFACE /permissive-)
endif()
if(FASTFLOAT_INSTALL)
include(CMakePackageConfigHelpers)
set(FASTFLOAT_VERSION_CONFIG "${CMAKE_CURRENT_BINARY_DIR}/module/FastFloatConfigVersion.cmake")
set(FASTFLOAT_PROJECT_CONFIG "${CMAKE_CURRENT_BINARY_DIR}/module/FastFloatConfig.cmake")
set(FASTFLOAT_CONFIG_INSTALL_DIR "${CMAKE_INSTALL_DATAROOTDIR}/cmake/FastFloat")
if(${CMAKE_VERSION} VERSION_LESS "3.14")
write_basic_package_version_file("${FASTFLOAT_VERSION_CONFIG}" VERSION ${PROJECT_VERSION} COMPATIBILITY SameMajorVersion)
else()
write_basic_package_version_file("${FASTFLOAT_VERSION_CONFIG}" VERSION ${PROJECT_VERSION} COMPATIBILITY SameMajorVersion ARCH_INDEPENDENT)
endif()
configure_package_config_file("cmake/config.cmake.in"
"${FASTFLOAT_PROJECT_CONFIG}"
INSTALL_DESTINATION "${FASTFLOAT_CONFIG_INSTALL_DIR}")
install(DIRECTORY "${PROJECT_SOURCE_DIR}/include/fast_float" DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}")
install(FILES "${FASTFLOAT_PROJECT_CONFIG}" "${FASTFLOAT_VERSION_CONFIG}" DESTINATION "${FASTFLOAT_CONFIG_INSTALL_DIR}")
install(EXPORT ${PROJECT_NAME}-targets NAMESPACE FastFloat:: DESTINATION "${FASTFLOAT_CONFIG_INSTALL_DIR}")
install(TARGETS fast_float
EXPORT ${PROJECT_NAME}-targets
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
)
endif()

190
thirdparty/fast_float/LICENSE-APACHE vendored Normal file
View File

@ -0,0 +1,190 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
Copyright 2021 The fast_float authors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

23
thirdparty/fast_float/LICENSE-BOOST vendored Normal file
View File

@ -0,0 +1,23 @@
Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:
The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

27
thirdparty/fast_float/LICENSE-MIT vendored Normal file
View File

@ -0,0 +1,27 @@
MIT License
Copyright (c) 2021 The fast_float authors
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

View File

@ -0,0 +1,588 @@
#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H
#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <limits>
#include <type_traits>
#include "float_common.h"
#ifdef FASTFLOAT_SSE2
#include <emmintrin.h>
#endif
#ifdef FASTFLOAT_NEON
#include <arm_neon.h>
#endif
namespace fast_float {
template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() {
#ifdef FASTFLOAT_HAS_SIMD
return std::is_same<UC, char16_t>::value;
#else
return false;
#endif
}
// Next function can be micro-optimized, but compilers are entirely
// able to optimize it well.
template <typename UC>
fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
return !(c > UC('9') || c < UC('0'));
}
fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 |
(val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 |
(val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 |
(val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56;
}
// Read 8 UC into a u64. Truncates UC if not char.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
read8_to_u64(UC const *chars) {
if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) {
uint64_t val = 0;
for (int i = 0; i < 8; ++i) {
val |= uint64_t(uint8_t(*chars)) << (i * 8);
++chars;
}
return val;
}
uint64_t val;
::memcpy(&val, chars, sizeof(uint64_t));
#if FASTFLOAT_IS_BIG_ENDIAN == 1
// Need to read as-if the number was in little-endian order.
val = byteswap(val);
#endif
return val;
}
#ifdef FASTFLOAT_SSE2
fastfloat_really_inline uint64_t simd_read8_to_u64(__m128i const data) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
__m128i const packed = _mm_packus_epi16(data, data);
#ifdef FASTFLOAT_64BIT
return uint64_t(_mm_cvtsi128_si64(packed));
#else
uint64_t value;
// Visual Studio + older versions of GCC don't support _mm_storeu_si64
_mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed);
return value;
#endif
FASTFLOAT_SIMD_RESTORE_WARNINGS
}
fastfloat_really_inline uint64_t simd_read8_to_u64(char16_t const *chars) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
return simd_read8_to_u64(
_mm_loadu_si128(reinterpret_cast<__m128i const *>(chars)));
FASTFLOAT_SIMD_RESTORE_WARNINGS
}
#elif defined(FASTFLOAT_NEON)
fastfloat_really_inline uint64_t simd_read8_to_u64(uint16x8_t const data) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
uint8x8_t utf8_packed = vmovn_u16(data);
return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0);
FASTFLOAT_SIMD_RESTORE_WARNINGS
}
fastfloat_really_inline uint64_t simd_read8_to_u64(char16_t const *chars) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
return simd_read8_to_u64(
vld1q_u16(reinterpret_cast<uint16_t const *>(chars)));
FASTFLOAT_SIMD_RESTORE_WARNINGS
}
#endif // FASTFLOAT_SSE2
// MSVC SFINAE is broken pre-VS2017
#if defined(_MSC_VER) && _MSC_VER <= 1900
template <typename UC>
#else
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
#endif
// dummy for compile
uint64_t simd_read8_to_u64(UC const *) {
return 0;
}
// credit @aqrit
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t
parse_eight_digits_unrolled(uint64_t val) {
uint64_t const mask = 0x000000FF000000FF;
uint64_t const mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
uint64_t const mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
val -= 0x3030303030303030;
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
return uint32_t(val);
}
// Call this if chars are definitely 8 digits.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t
parse_eight_digits_unrolled(UC const *chars) noexcept {
if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) {
return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay
}
return parse_eight_digits_unrolled(simd_read8_to_u64(chars));
}
// credit @aqrit
fastfloat_really_inline constexpr bool
is_made_of_eight_digits_fast(uint64_t val) noexcept {
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
0x8080808080808080));
}
#ifdef FASTFLOAT_HAS_SIMD
// Call this if chars might not be 8 digits.
// Using this style (instead of is_made_of_eight_digits_fast() then
// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
simd_parse_if_eight_digits_unrolled(char16_t const *chars,
uint64_t &i) noexcept {
if (cpp20_and_in_constexpr()) {
return false;
}
#ifdef FASTFLOAT_SSE2
FASTFLOAT_SIMD_DISABLE_WARNINGS
__m128i const data =
_mm_loadu_si128(reinterpret_cast<__m128i const *>(chars));
// (x - '0') <= 9
// http://0x80.pl/articles/simd-parsing-int-sequences.html
__m128i const t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
__m128i const t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));
if (_mm_movemask_epi8(t1) == 0) {
i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
return true;
} else
return false;
FASTFLOAT_SIMD_RESTORE_WARNINGS
#elif defined(FASTFLOAT_NEON)
FASTFLOAT_SIMD_DISABLE_WARNINGS
uint16x8_t const data = vld1q_u16(reinterpret_cast<uint16_t const *>(chars));
// (x - '0') <= 9
// http://0x80.pl/articles/simd-parsing-int-sequences.html
uint16x8_t const t0 = vsubq_u16(data, vmovq_n_u16('0'));
uint16x8_t const mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));
if (vminvq_u16(mask) == 0xFFFF) {
i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
return true;
} else
return false;
FASTFLOAT_SIMD_RESTORE_WARNINGS
#else
(void)chars;
(void)i;
return false;
#endif // FASTFLOAT_SSE2
}
#endif // FASTFLOAT_HAS_SIMD
// MSVC SFINAE is broken pre-VS2017
#if defined(_MSC_VER) && _MSC_VER <= 1900
template <typename UC>
#else
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
#endif
// dummy for compile
bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) {
return 0;
}
template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
loop_parse_if_eight_digits(UC const *&p, UC const *const pend, uint64_t &i) {
if (!has_simd_opt<UC>()) {
return;
}
while ((std::distance(p, pend) >= 8) &&
simd_parse_if_eight_digits_unrolled(
p, i)) { // in rare cases, this will overflow, but that's ok
p += 8;
}
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
loop_parse_if_eight_digits(char const *&p, char const *const pend,
uint64_t &i) {
// optimizes better than parse_if_eight_digits_unrolled() for UC = char.
while ((std::distance(p, pend) >= 8) &&
is_made_of_eight_digits_fast(read8_to_u64(p))) {
i = i * 100000000 +
parse_eight_digits_unrolled(read8_to_u64(
p)); // in rare cases, this will overflow, but that's ok
p += 8;
}
}
enum class parse_error {
no_error,
// [JSON-only] The minus sign must be followed by an integer.
missing_integer_after_sign,
// A sign must be followed by an integer or dot.
missing_integer_or_dot_after_sign,
// [JSON-only] The integer part must not have leading zeros.
leading_zeros_in_integer_part,
// [JSON-only] The integer part must have at least one digit.
no_digits_in_integer_part,
// [JSON-only] If there is a decimal point, there must be digits in the
// fractional part.
no_digits_in_fractional_part,
// The mantissa must have at least one digit.
no_digits_in_mantissa,
// Scientific notation requires an exponential part.
missing_exponential_part,
};
template <typename UC> struct parsed_number_string_t {
int64_t exponent{0};
uint64_t mantissa{0};
UC const *lastmatch{nullptr};
bool negative{false};
bool valid{false};
bool too_many_digits{false};
// contains the range of the significant digits
span<UC const> integer{}; // non-nullable
span<UC const> fraction{}; // nullable
parse_error error{parse_error::no_error};
};
using byte_span = span<char const>;
using parsed_number_string = parsed_number_string_t<char>;
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
report_parse_error(UC const *p, parse_error error) {
parsed_number_string_t<UC> answer;
answer.valid = false;
answer.lastmatch = p;
answer.error = error;
return answer;
}
// Assuming that you use no more than 19 digits, this will
// parse an ASCII string.
template <bool basic_json_fmt, typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
parse_number_string(UC const *p, UC const *pend,
parse_options_t<UC> options) noexcept {
chars_format const fmt = detail::adjust_for_feature_macros(options.format);
UC const decimal_point = options.decimal_point;
parsed_number_string_t<UC> answer;
answer.valid = false;
answer.too_many_digits = false;
// assume p < pend, so dereference without checks;
answer.negative = (*p == UC('-'));
// C++17 20.19.3.(7.1) explicitly forbids '+' sign here
if ((*p == UC('-')) || (uint64_t(fmt & chars_format::allow_leading_plus) &&
!basic_json_fmt && *p == UC('+'))) {
++p;
if (p == pend) {
return report_parse_error<UC>(
p, parse_error::missing_integer_or_dot_after_sign);
}
FASTFLOAT_IF_CONSTEXPR17(basic_json_fmt) {
if (!is_integer(*p)) { // a sign must be followed by an integer
return report_parse_error<UC>(p,
parse_error::missing_integer_after_sign);
}
}
else {
if (!is_integer(*p) &&
(*p !=
decimal_point)) { // a sign must be followed by an integer or the dot
return report_parse_error<UC>(
p, parse_error::missing_integer_or_dot_after_sign);
}
}
}
UC const *const start_digits = p;
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
while ((p != pend) && is_integer(*p)) {
// a multiplication by 10 is cheaper than an arbitrary integer
// multiplication
i = 10 * i +
uint64_t(*p -
UC('0')); // might overflow, we will handle the overflow later
++p;
}
UC const *const end_of_integer_part = p;
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
answer.integer = span<UC const>(start_digits, size_t(digit_count));
FASTFLOAT_IF_CONSTEXPR17(basic_json_fmt) {
// at least 1 digit in integer part, without leading zeros
if (digit_count == 0) {
return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part);
}
if ((start_digits[0] == UC('0') && digit_count > 1)) {
return report_parse_error<UC>(start_digits,
parse_error::leading_zeros_in_integer_part);
}
}
int64_t exponent = 0;
bool const has_decimal_point = (p != pend) && (*p == decimal_point);
if (has_decimal_point) {
++p;
UC const *before = p;
// can occur at most twice without overflowing, but let it occur more, since
// for integers with many digits, digit parsing is the primary bottleneck.
loop_parse_if_eight_digits(p, pend, i);
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - UC('0'));
++p;
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
}
exponent = before - p;
answer.fraction = span<UC const>(before, size_t(p - before));
digit_count -= exponent;
}
FASTFLOAT_IF_CONSTEXPR17(basic_json_fmt) {
// at least 1 digit in fractional part
if (has_decimal_point && exponent == 0) {
return report_parse_error<UC>(p,
parse_error::no_digits_in_fractional_part);
}
}
else if (digit_count == 0) { // we must have encountered at least one integer!
return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa);
}
int64_t exp_number = 0; // explicit exponential part
if ((uint64_t(fmt & chars_format::scientific) && (p != pend) &&
((UC('e') == *p) || (UC('E') == *p))) ||
(uint64_t(fmt & detail::basic_fortran_fmt) && (p != pend) &&
((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) ||
(UC('D') == *p)))) {
UC const *location_of_e = p;
if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) ||
(UC('D') == *p)) {
++p;
}
bool neg_exp = false;
if ((p != pend) && (UC('-') == *p)) {
neg_exp = true;
++p;
} else if ((p != pend) &&
(UC('+') ==
*p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
++p;
}
if ((p == pend) || !is_integer(*p)) {
if (!uint64_t(fmt & chars_format::fixed)) {
// The exponential part is invalid for scientific notation, so it must
// be a trailing token for fixed notation. However, fixed notation is
// disabled, so report a scientific notation error.
return report_parse_error<UC>(p, parse_error::missing_exponential_part);
}
// Otherwise, we will be ignoring the 'e'.
p = location_of_e;
} else {
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - UC('0'));
if (exp_number < 0x10000000) {
exp_number = 10 * exp_number + digit;
}
++p;
}
if (neg_exp) {
exp_number = -exp_number;
}
exponent += exp_number;
}
} else {
// If it scientific and not fixed, we have to bail out.
if (uint64_t(fmt & chars_format::scientific) &&
!uint64_t(fmt & chars_format::fixed)) {
return report_parse_error<UC>(p, parse_error::missing_exponential_part);
}
}
answer.lastmatch = p;
answer.valid = true;
// If we frequently had to deal with long strings of digits,
// we could extend our code by using a 128-bit integer instead
// of a 64-bit integer. However, this is uncommon.
//
// We can deal with up to 19 digits.
if (digit_count > 19) { // this is uncommon
// It is possible that the integer had an overflow.
// We have to handle the case where we have 0.0000somenumber.
// We need to be mindful of the case where we only have zeroes...
// E.g., 0.000000000...000.
UC const *start = start_digits;
while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
if (*start == UC('0')) {
digit_count--;
}
start++;
}
if (digit_count > 19) {
answer.too_many_digits = true;
// Let us start again, this time, avoiding overflows.
// We don't need to check if is_integer, since we use the
// pre-tokenized spans from above.
i = 0;
p = answer.integer.ptr;
UC const *int_end = p + answer.integer.len();
uint64_t const minimal_nineteen_digit_integer{1000000000000000000};
while ((i < minimal_nineteen_digit_integer) && (p != int_end)) {
i = i * 10 + uint64_t(*p - UC('0'));
++p;
}
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
exponent = end_of_integer_part - p + exp_number;
} else { // We have a value with a fractional component.
p = answer.fraction.ptr;
UC const *frac_end = p + answer.fraction.len();
while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
i = i * 10 + uint64_t(*p - UC('0'));
++p;
}
exponent = answer.fraction.ptr - p + exp_number;
}
// We have now corrected both exponent and i, to a truncated value
}
}
answer.exponent = exponent;
answer.mantissa = i;
return answer;
}
template <typename T, typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
parse_int_string(UC const *p, UC const *pend, T &value,
parse_options_t<UC> options) {
chars_format const fmt = detail::adjust_for_feature_macros(options.format);
int const base = options.base;
from_chars_result_t<UC> answer;
UC const *const first = p;
bool const negative = (*p == UC('-'));
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(push)
#pragma warning(disable : 4127)
#endif
if (!std::is_signed<T>::value && negative) {
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(pop)
#endif
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
}
if ((*p == UC('-')) ||
(uint64_t(fmt & chars_format::allow_leading_plus) && (*p == UC('+')))) {
++p;
}
UC const *const start_num = p;
while (p != pend && *p == UC('0')) {
++p;
}
bool const has_leading_zeros = p > start_num;
UC const *const start_digits = p;
uint64_t i = 0;
if (base == 10) {
loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible
}
while (p != pend) {
uint8_t digit = ch_to_digit(*p);
if (digit >= base) {
break;
}
i = uint64_t(base) * i + digit; // might overflow, check this later
p++;
}
size_t digit_count = size_t(p - start_digits);
if (digit_count == 0) {
if (has_leading_zeros) {
value = 0;
answer.ec = std::errc();
answer.ptr = p;
} else {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
}
return answer;
}
answer.ptr = p;
// check u64 overflow
size_t max_digits = max_digits_u64(base);
if (digit_count > max_digits) {
answer.ec = std::errc::result_out_of_range;
return answer;
}
// this check can be eliminated for all other types, but they will all require
// a max_digits(base) equivalent
if (digit_count == max_digits && i < min_safe_u64(base)) {
answer.ec = std::errc::result_out_of_range;
return answer;
}
// check other types overflow
if (!std::is_same<T, uint64_t>::value) {
if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) {
answer.ec = std::errc::result_out_of_range;
return answer;
}
}
if (negative) {
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(push)
#pragma warning(disable : 4146)
#endif
// this weird workaround is required because:
// - converting unsigned to signed when its value is greater than signed max
// is UB pre-C++23.
// - reinterpret_casting (~i + 1) would work, but it is not constexpr
// this is always optimized into a neg instruction (note: T is an integer
// type)
value = T(-std::numeric_limits<T>::max() -
T(i - uint64_t(std::numeric_limits<T>::max())));
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(pop)
#endif
} else {
value = T(i);
}
answer.ec = std::errc();
return answer;
}
} // namespace fast_float
#endif

View File

@ -0,0 +1,638 @@
#ifndef FASTFLOAT_BIGINT_H
#define FASTFLOAT_BIGINT_H
#include <algorithm>
#include <cstdint>
#include <climits>
#include <cstring>
#include "float_common.h"
namespace fast_float {
// the limb width: we want efficient multiplication of double the bits in
// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
// extract the high and low parts efficiently. this is every 64-bit
// architecture except for sparc, which emulates 128-bit multiplication.
// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
// doing `8 * sizeof(limb)`.
#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
#define FASTFLOAT_64BIT_LIMB 1
typedef uint64_t limb;
constexpr size_t limb_bits = 64;
#else
#define FASTFLOAT_32BIT_LIMB
typedef uint32_t limb;
constexpr size_t limb_bits = 32;
#endif
typedef span<limb> limb_span;
// number of bits in a bigint. this needs to be at least the number
// of bits required to store the largest bigint, which is
// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
// ~3600 bits, so we round to 4000.
constexpr size_t bigint_bits = 4000;
constexpr size_t bigint_limbs = bigint_bits / limb_bits;
// vector-like type that is allocated on the stack. the entire
// buffer is pre-allocated, and only the length changes.
template <uint16_t size> struct stackvec {
limb data[size];
// we never need more than 150 limbs
uint16_t length{0};
stackvec() = default;
stackvec(stackvec const &) = delete;
stackvec &operator=(stackvec const &) = delete;
stackvec(stackvec &&) = delete;
stackvec &operator=(stackvec &&other) = delete;
// create stack vector from existing limb span.
FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) {
FASTFLOAT_ASSERT(try_extend(s));
}
FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
return data[index];
}
FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
return data[index];
}
// index from the end of the container
FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
size_t rindex = length - index - 1;
return data[rindex];
}
// set the length, without bounds checking.
FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept {
length = uint16_t(len);
}
constexpr size_t len() const noexcept { return length; }
constexpr bool is_empty() const noexcept { return length == 0; }
constexpr size_t capacity() const noexcept { return size; }
// append item to vector, without bounds checking
FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept {
data[length] = value;
length++;
}
// append item to vector, returning if item was added
FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept {
if (len() < capacity()) {
push_unchecked(value);
return true;
} else {
return false;
}
}
// add items to the vector, from a span, without bounds checking
FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept {
limb *ptr = data + length;
std::copy_n(s.ptr, s.len(), ptr);
set_len(len() + s.len());
}
// try to add items to the vector, returning if items were added
FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept {
if (len() + s.len() <= capacity()) {
extend_unchecked(s);
return true;
} else {
return false;
}
}
// resize the vector, without bounds checking
// if the new size is longer than the vector, assign value to each
// appended item.
FASTFLOAT_CONSTEXPR20
void resize_unchecked(size_t new_len, limb value) noexcept {
if (new_len > len()) {
size_t count = new_len - len();
limb *first = data + len();
limb *last = first + count;
::std::fill(first, last, value);
set_len(new_len);
} else {
set_len(new_len);
}
}
// try to resize the vector, returning if the vector was resized.
FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept {
if (new_len > capacity()) {
return false;
} else {
resize_unchecked(new_len, value);
return true;
}
}
// check if any limbs are non-zero after the given index.
// this needs to be done in reverse order, since the index
// is relative to the most significant limbs.
FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept {
while (index < len()) {
if (rindex(index) != 0) {
return true;
}
index++;
}
return false;
}
// normalize the big integer, so most-significant zero limbs are removed.
FASTFLOAT_CONSTEXPR14 void normalize() noexcept {
while (len() > 0 && rindex(0) == 0) {
length--;
}
}
};
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
empty_hi64(bool &truncated) noexcept {
truncated = false;
return 0;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint64_hi64(uint64_t r0, bool &truncated) noexcept {
truncated = false;
int shl = leading_zeroes(r0);
return r0 << shl;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept {
int shl = leading_zeroes(r0);
if (shl == 0) {
truncated = r1 != 0;
return r0;
} else {
int shr = 64 - shl;
truncated = (r1 << shl) != 0;
return (r0 << shl) | (r1 >> shr);
}
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint32_hi64(uint32_t r0, bool &truncated) noexcept {
return uint64_hi64(r0, truncated);
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept {
uint64_t x0 = r0;
uint64_t x1 = r1;
return uint64_hi64((x0 << 32) | x1, truncated);
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept {
uint64_t x0 = r0;
uint64_t x1 = r1;
uint64_t x2 = r2;
return uint64_hi64(x0, (x1 << 32) | x2, truncated);
}
// add two small integers, checking for overflow.
// we want an efficient operation. for msvc, where
// we don't have built-in intrinsics, this is still
// pretty fast.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
scalar_add(limb x, limb y, bool &overflow) noexcept {
limb z;
// gcc and clang
#if defined(__has_builtin)
#if __has_builtin(__builtin_add_overflow)
if (!cpp20_and_in_constexpr()) {
overflow = __builtin_add_overflow(x, y, &z);
return z;
}
#endif
#endif
// generic, this still optimizes correctly on MSVC.
z = x + y;
overflow = z < x;
return z;
}
// multiply two small integers, getting both the high and low bits.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
scalar_mul(limb x, limb y, limb &carry) noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
#if defined(__SIZEOF_INT128__)
// GCC and clang both define it as an extension.
__uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
carry = limb(z >> limb_bits);
return limb(z);
#else
// fallback, no native 128-bit integer multiplication with carry.
// on msvc, this optimizes identically, somehow.
value128 z = full_multiplication(x, y);
bool overflow;
z.low = scalar_add(z.low, carry, overflow);
z.high += uint64_t(overflow); // cannot overflow
carry = z.high;
return z.low;
#endif
#else
uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
carry = limb(z >> limb_bits);
return limb(z);
#endif
}
// add scalar value to bigint starting from offset.
// used in grade school multiplication
template <uint16_t size>
inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y,
size_t start) noexcept {
size_t index = start;
limb carry = y;
bool overflow;
while (carry != 0 && index < vec.len()) {
vec[index] = scalar_add(vec[index], carry, overflow);
carry = limb(overflow);
index += 1;
}
if (carry != 0) {
FASTFLOAT_TRY(vec.try_push(carry));
}
return true;
}
// add scalar value to bigint.
template <uint16_t size>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
small_add(stackvec<size> &vec, limb y) noexcept {
return small_add_from(vec, y, 0);
}
// multiply bigint by scalar value.
template <uint16_t size>
inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec,
limb y) noexcept {
limb carry = 0;
for (size_t index = 0; index < vec.len(); index++) {
vec[index] = scalar_mul(vec[index], y, carry);
}
if (carry != 0) {
FASTFLOAT_TRY(vec.try_push(carry));
}
return true;
}
// add bigint to bigint starting from index.
// used in grade school multiplication
template <uint16_t size>
FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y,
size_t start) noexcept {
// the effective x buffer is from `xstart..x.len()`, so exit early
// if we can't get that current range.
if (x.len() < start || y.len() > x.len() - start) {
FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
}
bool carry = false;
for (size_t index = 0; index < y.len(); index++) {
limb xi = x[index + start];
limb yi = y[index];
bool c1 = false;
bool c2 = false;
xi = scalar_add(xi, yi, c1);
if (carry) {
xi = scalar_add(xi, 1, c2);
}
x[index + start] = xi;
carry = c1 | c2;
}
// handle overflow
if (carry) {
FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
}
return true;
}
// add bigint to bigint.
template <uint16_t size>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
large_add_from(stackvec<size> &x, limb_span y) noexcept {
return large_add_from(x, y, 0);
}
// grade-school multiplication algorithm
template <uint16_t size>
FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept {
limb_span xs = limb_span(x.data, x.len());
stackvec<size> z(xs);
limb_span zs = limb_span(z.data, z.len());
if (y.len() != 0) {
limb y0 = y[0];
FASTFLOAT_TRY(small_mul(x, y0));
for (size_t index = 1; index < y.len(); index++) {
limb yi = y[index];
stackvec<size> zi;
if (yi != 0) {
// re-use the same buffer throughout
zi.set_len(0);
FASTFLOAT_TRY(zi.try_extend(zs));
FASTFLOAT_TRY(small_mul(zi, yi));
limb_span zis = limb_span(zi.data, zi.len());
FASTFLOAT_TRY(large_add_from(x, zis, index));
}
}
}
x.normalize();
return true;
}
// grade-school multiplication algorithm
template <uint16_t size>
FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept {
if (y.len() == 1) {
FASTFLOAT_TRY(small_mul(x, y[0]));
} else {
FASTFLOAT_TRY(long_mul(x, y));
}
return true;
}
template <typename = void> struct pow5_tables {
static constexpr uint32_t large_step = 135;
static constexpr uint64_t small_power_of_5[] = {
1UL,
5UL,
25UL,
125UL,
625UL,
3125UL,
15625UL,
78125UL,
390625UL,
1953125UL,
9765625UL,
48828125UL,
244140625UL,
1220703125UL,
6103515625UL,
30517578125UL,
152587890625UL,
762939453125UL,
3814697265625UL,
19073486328125UL,
95367431640625UL,
476837158203125UL,
2384185791015625UL,
11920928955078125UL,
59604644775390625UL,
298023223876953125UL,
1490116119384765625UL,
7450580596923828125UL,
};
#ifdef FASTFLOAT_64BIT_LIMB
constexpr static limb large_power_of_5[] = {
1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
10482974169319127550UL, 198276706040285095UL};
#else
constexpr static limb large_power_of_5[] = {
4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
#endif
};
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
template <typename T> constexpr uint32_t pow5_tables<T>::large_step;
template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[];
template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[];
#endif
// big integer type. implements a small subset of big integer
// arithmetic, using simple algorithms since asymptotically
// faster algorithms are slower for a small number of limbs.
// all operations assume the big-integer is normalized.
struct bigint : pow5_tables<> {
// storage of the limbs, in little-endian order.
stackvec<bigint_limbs> vec;
FASTFLOAT_CONSTEXPR20 bigint() : vec() {}
bigint(bigint const &) = delete;
bigint &operator=(bigint const &) = delete;
bigint(bigint &&) = delete;
bigint &operator=(bigint &&other) = delete;
FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() {
#ifdef FASTFLOAT_64BIT_LIMB
vec.push_unchecked(value);
#else
vec.push_unchecked(uint32_t(value));
vec.push_unchecked(uint32_t(value >> 32));
#endif
vec.normalize();
}
// get the high 64 bits from the vector, and if bits were truncated.
// this is to get the significant digits for the float.
FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
if (vec.len() == 0) {
return empty_hi64(truncated);
} else if (vec.len() == 1) {
return uint64_hi64(vec.rindex(0), truncated);
} else {
uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
truncated |= vec.nonzero(2);
return result;
}
#else
if (vec.len() == 0) {
return empty_hi64(truncated);
} else if (vec.len() == 1) {
return uint32_hi64(vec.rindex(0), truncated);
} else if (vec.len() == 2) {
return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
} else {
uint64_t result =
uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
truncated |= vec.nonzero(3);
return result;
}
#endif
}
// compare two big integers, returning the large value.
// assumes both are normalized. if the return value is
// negative, other is larger, if the return value is
// positive, this is larger, otherwise they are equal.
// the limbs are stored in little-endian order, so we
// must compare the limbs in ever order.
FASTFLOAT_CONSTEXPR20 int compare(bigint const &other) const noexcept {
if (vec.len() > other.vec.len()) {
return 1;
} else if (vec.len() < other.vec.len()) {
return -1;
} else {
for (size_t index = vec.len(); index > 0; index--) {
limb xi = vec[index - 1];
limb yi = other.vec[index - 1];
if (xi > yi) {
return 1;
} else if (xi < yi) {
return -1;
}
}
return 0;
}
}
// shift left each limb n bits, carrying over to the new limb
// returns true if we were able to shift all the digits.
FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept {
// Internally, for each item, we shift left by n, and add the previous
// right shifted limb-bits.
// For example, we transform (for u8) shifted left 2, to:
// b10100100 b01000010
// b10 b10010001 b00001000
FASTFLOAT_DEBUG_ASSERT(n != 0);
FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);
size_t shl = n;
size_t shr = limb_bits - shl;
limb prev = 0;
for (size_t index = 0; index < vec.len(); index++) {
limb xi = vec[index];
vec[index] = (xi << shl) | (prev >> shr);
prev = xi;
}
limb carry = prev >> shr;
if (carry != 0) {
return vec.try_push(carry);
}
return true;
}
// move the limbs left by `n` limbs.
FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept {
FASTFLOAT_DEBUG_ASSERT(n != 0);
if (n + vec.len() > vec.capacity()) {
return false;
} else if (!vec.is_empty()) {
// move limbs
limb *dst = vec.data + n;
limb const *src = vec.data;
std::copy_backward(src, src + vec.len(), dst + vec.len());
// fill in empty limbs
limb *first = vec.data;
limb *last = first + n;
::std::fill(first, last, 0);
vec.set_len(n + vec.len());
return true;
} else {
return true;
}
}
// move the limbs left by `n` bits.
FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept {
size_t rem = n % limb_bits;
size_t div = n / limb_bits;
if (rem != 0) {
FASTFLOAT_TRY(shl_bits(rem));
}
if (div != 0) {
FASTFLOAT_TRY(shl_limbs(div));
}
return true;
}
// get the number of leading zeros in the bigint.
FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept {
if (vec.is_empty()) {
return 0;
} else {
#ifdef FASTFLOAT_64BIT_LIMB
return leading_zeroes(vec.rindex(0));
#else
// no use defining a specialized leading_zeroes for a 32-bit type.
uint64_t r0 = vec.rindex(0);
return leading_zeroes(r0 << 32);
#endif
}
}
// get the number of bits in the bigint.
FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept {
int lz = ctlz();
return int(limb_bits * vec.len()) - lz;
}
FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); }
FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); }
// multiply as if by 2 raised to a power.
FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); }
// multiply as if by 5 raised to a power.
FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept {
// multiply by a power of 5
size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
limb_span large = limb_span(large_power_of_5, large_length);
while (exp >= large_step) {
FASTFLOAT_TRY(large_mul(vec, large));
exp -= large_step;
}
#ifdef FASTFLOAT_64BIT_LIMB
uint32_t small_step = 27;
limb max_native = 7450580596923828125UL;
#else
uint32_t small_step = 13;
limb max_native = 1220703125U;
#endif
while (exp >= small_step) {
FASTFLOAT_TRY(small_mul(vec, max_native));
exp -= small_step;
}
if (exp != 0) {
// Work around clang bug https://godbolt.org/z/zedh7rrhc
// This is similar to https://github.com/llvm/llvm-project/issues/47746,
// except the workaround described there don't work here
FASTFLOAT_TRY(small_mul(
vec, limb(((void)small_power_of_5[0], small_power_of_5[exp]))));
}
return true;
}
// multiply as if by 10 raised to a power.
FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept {
FASTFLOAT_TRY(pow5(exp));
return pow2(exp);
}
};
} // namespace fast_float
#endif

View File

@ -0,0 +1,53 @@
#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
#ifdef __has_include
#if __has_include(<version>)
#include <version>
#endif
#endif
// Testing for https://wg21.link/N3652, adopted in C++14
#if defined(__cpp_constexpr) && __cpp_constexpr >= 201304
#define FASTFLOAT_CONSTEXPR14 constexpr
#else
#define FASTFLOAT_CONSTEXPR14
#endif
#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L
#define FASTFLOAT_HAS_BIT_CAST 1
#else
#define FASTFLOAT_HAS_BIT_CAST 0
#endif
#if defined(__cpp_lib_is_constant_evaluated) && \
__cpp_lib_is_constant_evaluated >= 201811L
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1
#else
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0
#endif
#if defined(__cpp_if_constexpr) && __cpp_if_constexpr >= 201606L
#define FASTFLOAT_IF_CONSTEXPR17(x) if constexpr (x)
#else
#define FASTFLOAT_IF_CONSTEXPR17(x) if (x)
#endif
// Testing for relevant C++20 constexpr library features
#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \
defined(__cpp_lib_constexpr_algorithms) && \
__cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/
#define FASTFLOAT_CONSTEXPR20 constexpr
#define FASTFLOAT_IS_CONSTEXPR 1
#else
#define FASTFLOAT_CONSTEXPR20
#define FASTFLOAT_IS_CONSTEXPR 0
#endif
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0
#else
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1
#endif
#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H

View File

@ -0,0 +1,212 @@
#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
#define FASTFLOAT_DECIMAL_TO_BINARY_H
#include "float_common.h"
#include "fast_table.h"
#include <cfloat>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <cstring>
namespace fast_float {
// This will compute or rather approximate w * 5**q and return a pair of 64-bit
// words approximating the result, with the "high" part corresponding to the
// most significant bits and the low part corresponding to the least significant
// bits.
//
template <int bit_precision>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
compute_product_approximation(int64_t q, uint64_t w) {
int const index = 2 * int(q - powers::smallest_power_of_five);
// For small values of q, e.g., q in [0,27], the answer is always exact
// because The line value128 firstproduct = full_multiplication(w,
// power_of_five_128[index]); gives the exact answer.
value128 firstproduct =
full_multiplication(w, powers::power_of_five_128[index]);
static_assert((bit_precision >= 0) && (bit_precision <= 64),
" precision should be in (0,64]");
constexpr uint64_t precision_mask =
(bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
: uint64_t(0xFFFFFFFFFFFFFFFF);
if ((firstproduct.high & precision_mask) ==
precision_mask) { // could further guard with (lower + w < lower)
// regarding the second product, we only need secondproduct.high, but our
// expectation is that the compiler will optimize this extra work away if
// needed.
value128 secondproduct =
full_multiplication(w, powers::power_of_five_128[index + 1]);
firstproduct.low += secondproduct.high;
if (secondproduct.high > firstproduct.low) {
firstproduct.high++;
}
}
return firstproduct;
}
namespace detail {
/**
* For q in (0,350), we have that
* f = (((152170 + 65536) * q ) >> 16);
* is equal to
* floor(p) + q
* where
* p = log(5**q)/log(2) = q * log(5)/log(2)
*
* For negative values of q in (-400,0), we have that
* f = (((152170 + 65536) * q ) >> 16);
* is equal to
* -ceil(p) + q
* where
* p = log(5**-q)/log(2) = -q * log(5)/log(2)
*/
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
return (((152170 + 65536) * q) >> 16) + 63;
}
} // namespace detail
// create an adjusted mantissa, biased by the invalid power2
// for significant digits already multiplied by 10 ** q.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa
compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
int hilz = int(w >> 63) ^ 1;
adjusted_mantissa answer;
answer.mantissa = w << hilz;
int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 +
invalid_am_bias);
return answer;
}
// w * 10 ** q, without rounding the representation up.
// the power2 in the exponent will be adjusted by invalid_am_bias.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
compute_error(int64_t q, uint64_t w) noexcept {
int lz = leading_zeroes(w);
w <<= lz;
value128 product =
compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
return compute_error_scaled<binary>(q, product.high, lz);
}
// Computers w * 10 ** q.
// The returned value should be a valid number that simply needs to be
// packed. However, in some very rare cases, the computation will fail. In such
// cases, we return an adjusted_mantissa with a negative power of 2: the caller
// should recompute in such cases.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
compute_float(int64_t q, uint64_t w) noexcept {
adjusted_mantissa answer;
if ((w == 0) || (q < binary::smallest_power_of_ten())) {
answer.power2 = 0;
answer.mantissa = 0;
// result should be zero
return answer;
}
if (q > binary::largest_power_of_ten()) {
// we want to get infinity:
answer.power2 = binary::infinite_power();
answer.mantissa = 0;
return answer;
}
// At this point in time q is in [powers::smallest_power_of_five,
// powers::largest_power_of_five].
// We want the most significant bit of i to be 1. Shift if needed.
int lz = leading_zeroes(w);
w <<= lz;
// The required precision is binary::mantissa_explicit_bits() + 3 because
// 1. We need the implicit bit
// 2. We need an extra bit for rounding purposes
// 3. We might lose a bit due to the "upperbit" routine (result too small,
// requiring a shift)
value128 product =
compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
// The computed 'product' is always sufficient.
// Mathematical proof:
// Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to
// appear) See script/mushtak_lemire.py
// The "compute_product_approximation" function can be slightly slower than a
// branchless approach: value128 product = compute_product(q, w); but in
// practice, we can win big with the compute_product_approximation if its
// additional branch is easily predicted. Which is best is data specific.
int upperbit = int(product.high >> 63);
int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3;
answer.mantissa = product.high >> shift;
answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz -
binary::minimum_exponent());
if (answer.power2 <= 0) { // we have a subnormal?
// Here have that answer.power2 <= 0 so -answer.power2 >= 0
if (-answer.power2 + 1 >=
64) { // if we have more than 64 bits below the minimum exponent, you
// have a zero for sure.
answer.power2 = 0;
answer.mantissa = 0;
// result should be zero
return answer;
}
// next line is safe because -answer.power2 + 1 < 64
answer.mantissa >>= -answer.power2 + 1;
// Thankfully, we can't have both "round-to-even" and subnormals because
// "round-to-even" only occurs for powers close to 0 in the 32-bit and
// and 64-bit case (with no more than 19 digits).
answer.mantissa += (answer.mantissa & 1); // round up
answer.mantissa >>= 1;
// There is a weird scenario where we don't have a subnormal but just.
// Suppose we start with 2.2250738585072013e-308, we end up
// with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
// whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round
// up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer
// subnormal, but we can only know this after rounding.
// So we only declare a subnormal if we are smaller than the threshold.
answer.power2 =
(answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits()))
? 0
: 1;
return answer;
}
// usually, we round *up*, but if we fall right in between and and we have an
// even basis, we need to round down
// We are only concerned with the cases where 5**q fits in single 64-bit word.
if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) &&
(q <= binary::max_exponent_round_to_even()) &&
((answer.mantissa & 3) == 1)) { // we may fall between two floats!
// To be in-between two floats we need that in doing
// answer.mantissa = product.high >> (upperbit + 64 -
// binary::mantissa_explicit_bits() - 3);
// ... we dropped out only zeroes. But if this happened, then we can go
// back!!!
if ((answer.mantissa << shift) == product.high) {
answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
}
}
answer.mantissa += (answer.mantissa & 1); // round up
answer.mantissa >>= 1;
if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
answer.power2++; // undo previous addition
}
answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
if (answer.power2 >= binary::infinite_power()) { // infinity
answer.power2 = binary::infinite_power();
answer.mantissa = 0;
}
return answer;
}
} // namespace fast_float
#endif

View File

@ -0,0 +1,457 @@
#ifndef FASTFLOAT_DIGIT_COMPARISON_H
#define FASTFLOAT_DIGIT_COMPARISON_H
#include <algorithm>
#include <cstdint>
#include <cstring>
#include <iterator>
#include "float_common.h"
#include "bigint.h"
#include "ascii_number.h"
namespace fast_float {
// 1e0 to 1e19
constexpr static uint64_t powers_of_ten_uint64[] = {1UL,
10UL,
100UL,
1000UL,
10000UL,
100000UL,
1000000UL,
10000000UL,
100000000UL,
1000000000UL,
10000000000UL,
100000000000UL,
1000000000000UL,
10000000000000UL,
100000000000000UL,
1000000000000000UL,
10000000000000000UL,
100000000000000000UL,
1000000000000000000UL,
10000000000000000000UL};
// calculate the exponent, in scientific notation, of the number.
// this algorithm is not even close to optimized, but it has no practical
// effect on performance: in order to have a faster algorithm, we'd need
// to slow down performance for faster algorithms, and this is still fast.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t
scientific_exponent(parsed_number_string_t<UC> &num) noexcept {
uint64_t mantissa = num.mantissa;
int32_t exponent = int32_t(num.exponent);
while (mantissa >= 10000) {
mantissa /= 10000;
exponent += 4;
}
while (mantissa >= 100) {
mantissa /= 100;
exponent += 2;
}
while (mantissa >= 10) {
mantissa /= 10;
exponent += 1;
}
return exponent;
}
// this converts a native floating-point number to an extended-precision float.
template <typename T>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
to_extended(T value) noexcept {
using equiv_uint = equiv_uint_t<T>;
constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
adjusted_mantissa am;
int32_t bias = binary_format<T>::mantissa_explicit_bits() -
binary_format<T>::minimum_exponent();
equiv_uint bits;
#if FASTFLOAT_HAS_BIT_CAST
bits = std::bit_cast<equiv_uint>(value);
#else
::memcpy(&bits, &value, sizeof(T));
#endif
if ((bits & exponent_mask) == 0) {
// denormal
am.power2 = 1 - bias;
am.mantissa = bits & mantissa_mask;
} else {
// normal
am.power2 = int32_t((bits & exponent_mask) >>
binary_format<T>::mantissa_explicit_bits());
am.power2 -= bias;
am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
}
return am;
}
// get the extended precision value of the halfway point between b and b+u.
// we are given a native float that represents b, so we need to adjust it
// halfway between b and b+u.
template <typename T>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
to_extended_halfway(T value) noexcept {
adjusted_mantissa am = to_extended(value);
am.mantissa <<= 1;
am.mantissa += 1;
am.power2 -= 1;
return am;
}
// round an extended-precision float to the nearest machine float.
template <typename T, typename callback>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am,
callback cb) noexcept {
int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
if (-am.power2 >= mantissa_shift) {
// have a denormal float
int32_t shift = -am.power2 + 1;
cb(am, std::min<int32_t>(shift, 64));
// check for round-up: if rounding-nearest carried us to the hidden bit.
am.power2 = (am.mantissa <
(uint64_t(1) << binary_format<T>::mantissa_explicit_bits()))
? 0
: 1;
return;
}
// have a normal float, use the default shift.
cb(am, mantissa_shift);
// check for carry
if (am.mantissa >=
(uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
am.power2++;
}
// check for infinite: we could have carried to an infinite power
am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
if (am.power2 >= binary_format<T>::infinite_power()) {
am.power2 = binary_format<T>::infinite_power();
am.mantissa = 0;
}
}
template <typename callback>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
round_nearest_tie_even(adjusted_mantissa &am, int32_t shift,
callback cb) noexcept {
uint64_t const mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1;
uint64_t const halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1);
uint64_t truncated_bits = am.mantissa & mask;
bool is_above = truncated_bits > halfway;
bool is_halfway = truncated_bits == halfway;
// shift digits into position
if (shift == 64) {
am.mantissa = 0;
} else {
am.mantissa >>= shift;
}
am.power2 += shift;
bool is_odd = (am.mantissa & 1) == 1;
am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
round_down(adjusted_mantissa &am, int32_t shift) noexcept {
if (shift == 64) {
am.mantissa = 0;
} else {
am.mantissa >>= shift;
}
am.power2 += shift;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
skip_zeros(UC const *&first, UC const *last) noexcept {
uint64_t val;
while (!cpp20_and_in_constexpr() &&
std::distance(first, last) >= int_cmp_len<UC>()) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != int_cmp_zeros<UC>()) {
break;
}
first += int_cmp_len<UC>();
}
while (first != last) {
if (*first != UC('0')) {
break;
}
first++;
}
}
// determine if any non-zero digits were truncated.
// all characters must be valid digits.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
is_truncated(UC const *first, UC const *last) noexcept {
// do 8-bit optimizations, can just compare to 8 literal 0s.
uint64_t val;
while (!cpp20_and_in_constexpr() &&
std::distance(first, last) >= int_cmp_len<UC>()) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != int_cmp_zeros<UC>()) {
return true;
}
first += int_cmp_len<UC>();
}
while (first != last) {
if (*first != UC('0')) {
return true;
}
++first;
}
return false;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
is_truncated(span<UC const> s) noexcept {
return is_truncated(s.ptr, s.ptr + s.len());
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
parse_eight_digits(UC const *&p, limb &value, size_t &counter,
size_t &count) noexcept {
value = value * 100000000 + parse_eight_digits_unrolled(p);
p += 8;
counter += 8;
count += 8;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
parse_one_digit(UC const *&p, limb &value, size_t &counter,
size_t &count) noexcept {
value = value * 10 + limb(*p - UC('0'));
p++;
counter++;
count++;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
add_native(bigint &big, limb power, limb value) noexcept {
big.mul(power);
big.add(value);
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
round_up_bigint(bigint &big, size_t &count) noexcept {
// need to round-up the digits, but need to avoid rounding
// ....9999 to ...10000, which could cause a false halfway point.
add_native(big, 10, 1);
count++;
}
// parse the significant digits into a big integer
template <typename UC>
inline FASTFLOAT_CONSTEXPR20 void
parse_mantissa(bigint &result, parsed_number_string_t<UC> &num,
size_t max_digits, size_t &digits) noexcept {
// try to minimize the number of big integer and scalar multiplication.
// therefore, try to parse 8 digits at a time, and multiply by the largest
// scalar value (9 or 19 digits) for each step.
size_t counter = 0;
digits = 0;
limb value = 0;
#ifdef FASTFLOAT_64BIT_LIMB
size_t step = 19;
#else
size_t step = 9;
#endif
// process all integer digits.
UC const *p = num.integer.ptr;
UC const *pend = p + num.integer.len();
skip_zeros(p, pend);
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
(max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit(p, value, counter, digits);
}
if (digits == max_digits) {
// add the temporary value, then check if we've truncated any digits
add_native(result, limb(powers_of_ten_uint64[counter]), value);
bool truncated = is_truncated(p, pend);
if (num.fraction.ptr != nullptr) {
truncated |= is_truncated(num.fraction);
}
if (truncated) {
round_up_bigint(result, digits);
}
return;
} else {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
counter = 0;
value = 0;
}
}
// add our fraction digits, if they're available.
if (num.fraction.ptr != nullptr) {
p = num.fraction.ptr;
pend = p + num.fraction.len();
if (digits == 0) {
skip_zeros(p, pend);
}
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
(max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit(p, value, counter, digits);
}
if (digits == max_digits) {
// add the temporary value, then check if we've truncated any digits
add_native(result, limb(powers_of_ten_uint64[counter]), value);
bool truncated = is_truncated(p, pend);
if (truncated) {
round_up_bigint(result, digits);
}
return;
} else {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
counter = 0;
value = 0;
}
}
}
if (counter != 0) {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
}
}
template <typename T>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept {
FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
adjusted_mantissa answer;
bool truncated;
answer.mantissa = bigmant.hi64(truncated);
int bias = binary_format<T>::mantissa_explicit_bits() -
binary_format<T>::minimum_exponent();
answer.power2 = bigmant.bit_length() - 64 + bias;
round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) {
round_nearest_tie_even(
a, shift,
[truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
return is_above || (is_halfway && truncated) ||
(is_odd && is_halfway);
});
});
return answer;
}
// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
// we then need to scale by `2^(f- e)`, and then the two significant digits
// are of the same magnitude.
template <typename T>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
bigint &real_digits = bigmant;
int32_t real_exp = exponent;
// get the value of `b`, rounded down, and get a bigint representation of b+h
adjusted_mantissa am_b = am;
// gcc7 buf: use a lambda to remove the noexcept qualifier bug with
// -Wnoexcept-type.
round<T>(am_b,
[](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); });
T b;
to_float(false, am_b, b);
adjusted_mantissa theor = to_extended_halfway(b);
bigint theor_digits(theor.mantissa);
int32_t theor_exp = theor.power2;
// scale real digits and theor digits to be same power.
int32_t pow2_exp = theor_exp - real_exp;
uint32_t pow5_exp = uint32_t(-real_exp);
if (pow5_exp != 0) {
FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
}
if (pow2_exp > 0) {
FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
} else if (pow2_exp < 0) {
FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
}
// compare digits, and use it to director rounding
int ord = real_digits.compare(theor_digits);
adjusted_mantissa answer = am;
round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) {
round_nearest_tie_even(
a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
(void)_; // not needed, since we've done our comparison
(void)__; // not needed, since we've done our comparison
if (ord > 0) {
return true;
} else if (ord < 0) {
return false;
} else {
return is_odd;
}
});
});
return answer;
}
// parse the significant digits as a big integer to unambiguously round the
// the significant digits. here, we are trying to determine how to round
// an extended float representation close to `b+h`, halfway between `b`
// (the float rounded-down) and `b+u`, the next positive float. this
// algorithm is always correct, and uses one of two approaches. when
// the exponent is positive relative to the significant digits (such as
// 1234), we create a big-integer representation, get the high 64-bits,
// determine if any lower bits are truncated, and use that to direct
// rounding. in case of a negative exponent relative to the significant
// digits (such as 1.2345), we create a theoretical representation of
// `b` as a big-integer type, scaled to the same binary exponent as
// the actual digits. we then compare the big integer representations
// of both, and use that to direct rounding.
template <typename T, typename UC>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept {
// remove the invalid exponent bias
am.power2 -= invalid_am_bias;
int32_t sci_exp = scientific_exponent(num);
size_t max_digits = binary_format<T>::max_digits();
size_t digits = 0;
bigint bigmant;
parse_mantissa(bigmant, num, max_digits, digits);
// can't underflow, since digits is at most max_digits.
int32_t exponent = sci_exp + 1 - int32_t(digits);
if (exponent >= 0) {
return positive_digit_comp<T>(bigmant, exponent);
} else {
return negative_digit_comp<T>(bigmant, am, exponent);
}
}
} // namespace fast_float
#endif

View File

@ -0,0 +1,59 @@
#ifndef FASTFLOAT_FAST_FLOAT_H
#define FASTFLOAT_FAST_FLOAT_H
#include "float_common.h"
namespace fast_float {
/**
* This function parses the character sequence [first,last) for a number. It
* parses floating-point numbers expecting a locale-indepent format equivalent
* to what is used by std::strtod in the default ("C") locale. The resulting
* floating-point value is the closest floating-point values (using either float
* or double), using the "round to even" convention for values that would
* otherwise fall right in-between two values. That is, we provide exact parsing
* according to the IEEE standard.
*
* Given a successful parse, the pointer (`ptr`) in the returned value is set to
* point right after the parsed number, and the `value` referenced is set to the
* parsed value. In case of error, the returned `ec` contains a representative
* error, otherwise the default (`std::errc()`) value is stored.
*
* The implementation does not throw and does not allocate memory (e.g., with
* `new` or `malloc`).
*
* Like the C++17 standard, the `fast_float::from_chars` functions take an
* optional last argument of the type `fast_float::chars_format`. It is a bitset
* value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt &
* fast_float::chars_format::scientific` are set to determine whether we allow
* the fixed point and scientific notation respectively. The default is
* `fast_float::chars_format::general` which allows both `fixed` and
* `scientific`.
*/
template <typename T, typename UC = char,
typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>::value)>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value,
chars_format fmt = chars_format::general) noexcept;
/**
* Like from_chars, but accepts an `options` argument to govern number parsing.
* Both for floating-point types and integer types.
*/
template <typename T, typename UC = char>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(UC const *first, UC const *last, T &value,
parse_options_t<UC> options) noexcept;
/**
* from_chars for integer types.
*/
template <typename T, typename UC = char,
typename = FASTFLOAT_ENABLE_IF(is_supported_integer_type<T>::value)>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept;
} // namespace fast_float
#include "parse_number.h"
#endif // FASTFLOAT_FAST_FLOAT_H

View File

@ -0,0 +1,708 @@
#ifndef FASTFLOAT_FAST_TABLE_H
#define FASTFLOAT_FAST_TABLE_H
#include <cstdint>
namespace fast_float {
/**
* When mapping numbers from decimal to binary,
* we go from w * 10^q to m * 2^p but we have
* 10^q = 5^q * 2^q, so effectively
* we are trying to match
* w * 2^q * 5^q to m * 2^p. Thus the powers of two
* are not a concern since they can be represented
* exactly using the binary notation, only the powers of five
* affect the binary significand.
*/
/**
* The smallest non-zero float (binary64) is 2^-1074.
* We take as input numbers of the form w x 10^q where w < 2^64.
* We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076.
* However, we have that
* (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074.
* Thus it is possible for a number of the form w * 10^-342 where
* w is a 64-bit value to be a non-zero floating-point number.
*********
* Any number of form w * 10^309 where w>= 1 is going to be
* infinite in binary64 so we never need to worry about powers
* of 5 greater than 308.
*/
template <class unused = void> struct powers_template {
constexpr static int smallest_power_of_five =
binary_format<double>::smallest_power_of_ten();
constexpr static int largest_power_of_five =
binary_format<double>::largest_power_of_ten();
constexpr static int number_of_entries =
2 * (largest_power_of_five - smallest_power_of_five + 1);
// Powers of five from 5^-342 all the way to 5^308 rounded toward one.
constexpr static uint64_t power_of_five_128[number_of_entries] = {
0xeef453d6923bd65a, 0x113faa2906a13b3f,
0x9558b4661b6565f8, 0x4ac7ca59a424c507,
0xbaaee17fa23ebf76, 0x5d79bcf00d2df649,
0xe95a99df8ace6f53, 0xf4d82c2c107973dc,
0x91d8a02bb6c10594, 0x79071b9b8a4be869,
0xb64ec836a47146f9, 0x9748e2826cdee284,
0xe3e27a444d8d98b7, 0xfd1b1b2308169b25,
0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7,
0xb208ef855c969f4f, 0xbdbd2d335e51a935,
0xde8b2b66b3bc4723, 0xad2c788035e61382,
0x8b16fb203055ac76, 0x4c3bcb5021afcc31,
0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d,
0xd953e8624b85dd78, 0xd71d6dad34a2af0d,
0x87d4713d6f33aa6b, 0x8672648c40e5ad68,
0xa9c98d8ccb009506, 0x680efdaf511f18c2,
0xd43bf0effdc0ba48, 0x212bd1b2566def2,
0x84a57695fe98746d, 0x14bb630f7604b57,
0xa5ced43b7e3e9188, 0x419ea3bd35385e2d,
0xcf42894a5dce35ea, 0x52064cac828675b9,
0x818995ce7aa0e1b2, 0x7343efebd1940993,
0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8,
0xca66fa129f9b60a6, 0xd41a26e077774ef6,
0xfd00b897478238d0, 0x8920b098955522b4,
0x9e20735e8cb16382, 0x55b46e5f5d5535b0,
0xc5a890362fddbc62, 0xeb2189f734aa831d,
0xf712b443bbd52b7b, 0xa5e9ec7501d523e4,
0x9a6bb0aa55653b2d, 0x47b233c92125366e,
0xc1069cd4eabe89f8, 0x999ec0bb696e840a,
0xf148440a256e2c76, 0xc00670ea43ca250d,
0x96cd2a865764dbca, 0x380406926a5e5728,
0xbc807527ed3e12bc, 0xc605083704f5ecf2,
0xeba09271e88d976b, 0xf7864a44c633682e,
0x93445b8731587ea3, 0x7ab3ee6afbe0211d,
0xb8157268fdae9e4c, 0x5960ea05bad82964,
0xe61acf033d1a45df, 0x6fb92487298e33bd,
0x8fd0c16206306bab, 0xa5d3b6d479f8e056,
0xb3c4f1ba87bc8696, 0x8f48a4899877186c,
0xe0b62e2929aba83c, 0x331acdabfe94de87,
0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14,
0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9,
0xdb71e91432b1a24a, 0xc9e82cd9f69d6150,
0x892731ac9faf056e, 0xbe311c083a225cd2,
0xab70fe17c79ac6ca, 0x6dbd630a48aaf406,
0xd64d3d9db981787d, 0x92cbbccdad5b108,
0x85f0468293f0eb4e, 0x25bbf56008c58ea5,
0xa76c582338ed2621, 0xaf2af2b80af6f24e,
0xd1476e2c07286faa, 0x1af5af660db4aee1,
0x82cca4db847945ca, 0x50d98d9fc890ed4d,
0xa37fce126597973c, 0xe50ff107bab528a0,
0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8,
0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a,
0x9faacf3df73609b1, 0x77b191618c54e9ac,
0xc795830d75038c1d, 0xd59df5b9ef6a2417,
0xf97ae3d0d2446f25, 0x4b0573286b44ad1d,
0x9becce62836ac577, 0x4ee367f9430aec32,
0xc2e801fb244576d5, 0x229c41f793cda73f,
0xf3a20279ed56d48a, 0x6b43527578c1110f,
0x9845418c345644d6, 0x830a13896b78aaa9,
0xbe5691ef416bd60c, 0x23cc986bc656d553,
0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8,
0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9,
0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53,
0xe858ad248f5c22c9, 0xd1b3400f8f9cff68,
0x91376c36d99995be, 0x23100809b9c21fa1,
0xb58547448ffffb2d, 0xabd40a0c2832a78a,
0xe2e69915b3fff9f9, 0x16c90c8f323f516c,
0x8dd01fad907ffc3b, 0xae3da7d97f6792e3,
0xb1442798f49ffb4a, 0x99cd11cfdf41779c,
0xdd95317f31c7fa1d, 0x40405643d711d583,
0x8a7d3eef7f1cfc52, 0x482835ea666b2572,
0xad1c8eab5ee43b66, 0xda3243650005eecf,
0xd863b256369d4a40, 0x90bed43e40076a82,
0x873e4f75e2224e68, 0x5a7744a6e804a291,
0xa90de3535aaae202, 0x711515d0a205cb36,
0xd3515c2831559a83, 0xd5a5b44ca873e03,
0x8412d9991ed58091, 0xe858790afe9486c2,
0xa5178fff668ae0b6, 0x626e974dbe39a872,
0xce5d73ff402d98e3, 0xfb0a3d212dc8128f,
0x80fa687f881c7f8e, 0x7ce66634bc9d0b99,
0xa139029f6a239f72, 0x1c1fffc1ebc44e80,
0xc987434744ac874e, 0xa327ffb266b56220,
0xfbe9141915d7a922, 0x4bf1ff9f0062baa8,
0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9,
0xc4ce17b399107c22, 0xcb550fb4384d21d3,
0xf6019da07f549b2b, 0x7e2a53a146606a48,
0x99c102844f94e0fb, 0x2eda7444cbfc426d,
0xc0314325637a1939, 0xfa911155fefb5308,
0xf03d93eebc589f88, 0x793555ab7eba27ca,
0x96267c7535b763b5, 0x4bc1558b2f3458de,
0xbbb01b9283253ca2, 0x9eb1aaedfb016f16,
0xea9c227723ee8bcb, 0x465e15a979c1cadc,
0x92a1958a7675175f, 0xbfacd89ec191ec9,
0xb749faed14125d36, 0xcef980ec671f667b,
0xe51c79a85916f484, 0x82b7e12780e7401a,
0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810,
0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15,
0xdfbdcece67006ac9, 0x67a791e093e1d49a,
0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0,
0xaecc49914078536d, 0x58fae9f773886e18,
0xda7f5bf590966848, 0xaf39a475506a899e,
0x888f99797a5e012d, 0x6d8406c952429603,
0xaab37fd7d8f58178, 0xc8e5087ba6d33b83,
0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64,
0x855c3be0a17fcd26, 0x5cf2eea09a55067f,
0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e,
0xd0601d8efc57b08b, 0xf13b94daf124da26,
0x823c12795db6ce57, 0x76c53d08d6b70858,
0xa2cb1717b52481ed, 0x54768c4b0c64ca6e,
0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09,
0xfe5d54150b090b02, 0xd3f93b35435d7c4c,
0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf,
0xc6b8e9b0709f109a, 0x359ab6419ca1091b,
0xf867241c8cc6d4c0, 0xc30163d203c94b62,
0x9b407691d7fc44f8, 0x79e0de63425dcf1d,
0xc21094364dfb5636, 0x985915fc12f542e4,
0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d,
0x979cf3ca6cec5b5a, 0xa705992ceecf9c42,
0xbd8430bd08277231, 0x50c6ff782a838353,
0xece53cec4a314ebd, 0xa4f8bf5635246428,
0x940f4613ae5ed136, 0x871b7795e136be99,
0xb913179899f68584, 0x28e2557b59846e3f,
0xe757dd7ec07426e5, 0x331aeada2fe589cf,
0x9096ea6f3848984f, 0x3ff0d2c85def7621,
0xb4bca50b065abe63, 0xfed077a756b53a9,
0xe1ebce4dc7f16dfb, 0xd3e8495912c62894,
0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c,
0xb080392cc4349dec, 0xbd8d794d96aacfb3,
0xdca04777f541c567, 0xecf0d7a0fc5583a0,
0x89e42caaf9491b60, 0xf41686c49db57244,
0xac5d37d5b79b6239, 0x311c2875c522ced5,
0xd77485cb25823ac7, 0x7d633293366b828b,
0x86a8d39ef77164bc, 0xae5dff9c02033197,
0xa8530886b54dbdeb, 0xd9f57f830283fdfc,
0xd267caa862a12d66, 0xd072df63c324fd7b,
0x8380dea93da4bc60, 0x4247cb9e59f71e6d,
0xa46116538d0deb78, 0x52d9be85f074e608,
0xcd795be870516656, 0x67902e276c921f8b,
0x806bd9714632dff6, 0xba1cd8a3db53b6,
0xa086cfcd97bf97f3, 0x80e8a40eccd228a4,
0xc8a883c0fdaf7df0, 0x6122cd128006b2cd,
0xfad2a4b13d1b5d6c, 0x796b805720085f81,
0x9cc3a6eec6311a63, 0xcbe3303674053bb0,
0xc3f490aa77bd60fc, 0xbedbfc4411068a9c,
0xf4f1b4d515acb93b, 0xee92fb5515482d44,
0x991711052d8bf3c5, 0x751bdd152d4d1c4a,
0xbf5cd54678eef0b6, 0xd262d45a78a0635d,
0xef340a98172aace4, 0x86fb897116c87c34,
0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0,
0xbae0a846d2195712, 0x8974836059cca109,
0xe998d258869facd7, 0x2bd1a438703fc94b,
0x91ff83775423cc06, 0x7b6306a34627ddcf,
0xb67f6455292cbf08, 0x1a3bc84c17b1d542,
0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93,
0x8e938662882af53e, 0x547eb47b7282ee9c,
0xb23867fb2a35b28d, 0xe99e619a4f23aa43,
0xdec681f9f4c31f31, 0x6405fa00e2ec94d4,
0x8b3c113c38f9f37e, 0xde83bc408dd3dd04,
0xae0b158b4738705e, 0x9624ab50b148d445,
0xd98ddaee19068c76, 0x3badd624dd9b0957,
0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6,
0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c,
0xd47487cc8470652b, 0x7647c3200069671f,
0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073,
0xa5fb0a17c777cf09, 0xf468107100525890,
0xcf79cc9db955c2cc, 0x7182148d4066eeb4,
0x81ac1fe293d599bf, 0xc6f14cd848405530,
0xa21727db38cb002f, 0xb8ada00e5a506a7c,
0xca9cf1d206fdc03b, 0xa6d90811f0e4851c,
0xfd442e4688bd304a, 0x908f4a166d1da663,
0x9e4a9cec15763e2e, 0x9a598e4e043287fe,
0xc5dd44271ad3cdba, 0x40eff1e1853f29fd,
0xf7549530e188c128, 0xd12bee59e68ef47c,
0x9a94dd3e8cf578b9, 0x82bb74f8301958ce,
0xc13a148e3032d6e7, 0xe36a52363c1faf01,
0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1,
0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9,
0xbcb2b812db11a5de, 0x7415d448f6b6f0e7,
0xebdf661791d60f56, 0x111b495b3464ad21,
0x936b9fcebb25c995, 0xcab10dd900beec34,
0xb84687c269ef3bfb, 0x3d5d514f40eea742,
0xe65829b3046b0afa, 0xcb4a5a3112a5112,
0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab,
0xb3f4e093db73a093, 0x59ed216765690f56,
0xe0f218b8d25088b8, 0x306869c13ec3532c,
0x8c974f7383725573, 0x1e414218c73a13fb,
0xafbd2350644eeacf, 0xe5d1929ef90898fa,
0xdbac6c247d62a583, 0xdf45f746b74abf39,
0x894bc396ce5da772, 0x6b8bba8c328eb783,
0xab9eb47c81f5114f, 0x66ea92f3f326564,
0xd686619ba27255a2, 0xc80a537b0efefebd,
0x8613fd0145877585, 0xbd06742ce95f5f36,
0xa798fc4196e952e7, 0x2c48113823b73704,
0xd17f3b51fca3a7a0, 0xf75a15862ca504c5,
0x82ef85133de648c4, 0x9a984d73dbe722fb,
0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba,
0xcc963fee10b7d1b3, 0x318df905079926a8,
0xffbbcfe994e5c61f, 0xfdf17746497f7052,
0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633,
0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0,
0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0,
0x9c1661a651213e2d, 0x6bea10ca65c084e,
0xc31bfa0fe5698db8, 0x486e494fcff30a62,
0xf3e2f893dec3f126, 0x5a89dba3c3efccfa,
0x986ddb5c6b3a76b7, 0xf89629465a75e01c,
0xbe89523386091465, 0xf6bbb397f1135823,
0xee2ba6c0678b597f, 0x746aa07ded582e2c,
0x94db483840b717ef, 0xa8c2a44eb4571cdc,
0xba121a4650e4ddeb, 0x92f34d62616ce413,
0xe896a0d7e51e1566, 0x77b020baf9c81d17,
0x915e2486ef32cd60, 0xace1474dc1d122e,
0xb5b5ada8aaff80b8, 0xd819992132456ba,
0xe3231912d5bf60e6, 0x10e1fff697ed6c69,
0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1,
0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2,
0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde,
0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b,
0xad4ab7112eb3929d, 0x86c16c98d2c953c6,
0xd89d64d57a607744, 0xe871c7bf077ba8b7,
0x87625f056c7c4a8b, 0x11471cd764ad4972,
0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf,
0xd389b47879823479, 0x4aff1d108d4ec2c3,
0x843610cb4bf160cb, 0xcedf722a585139ba,
0xa54394fe1eedb8fe, 0xc2974eb4ee658828,
0xce947a3da6a9273e, 0x733d226229feea32,
0x811ccc668829b887, 0x806357d5a3f525f,
0xa163ff802a3426a8, 0xca07c2dcb0cf26f7,
0xc9bcff6034c13052, 0xfc89b393dd02f0b5,
0xfc2c3f3841f17c67, 0xbbac2078d443ace2,
0x9d9ba7832936edc0, 0xd54b944b84aa4c0d,
0xc5029163f384a931, 0xa9e795e65d4df11,
0xf64335bcf065d37d, 0x4d4617b5ff4a16d5,
0x99ea0196163fa42e, 0x504bced1bf8e4e45,
0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6,
0xf07da27a82c37088, 0x5d767327bb4e5a4c,
0x964e858c91ba2655, 0x3a6a07f8d510f86f,
0xbbe226efb628afea, 0x890489f70a55368b,
0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e,
0x92c8ae6b464fc96f, 0x3b0b8bc90012929d,
0xb77ada0617e3bbcb, 0x9ce6ebb40173744,
0xe55990879ddcaabd, 0xcc420a6a101d0515,
0x8f57fa54c2a9eab6, 0x9fa946824a12232d,
0xb32df8e9f3546564, 0x47939822dc96abf9,
0xdff9772470297ebd, 0x59787e2b93bc56f7,
0x8bfbea76c619ef36, 0x57eb4edb3c55b65a,
0xaefae51477a06b03, 0xede622920b6b23f1,
0xdab99e59958885c4, 0xe95fab368e45eced,
0x88b402f7fd75539b, 0x11dbcb0218ebb414,
0xaae103b5fcd2a881, 0xd652bdc29f26a119,
0xd59944a37c0752a2, 0x4be76d3346f0495f,
0x857fcae62d8493a5, 0x6f70a4400c562ddb,
0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952,
0xd097ad07a71f26b2, 0x7e2000a41346a7a7,
0x825ecc24c873782f, 0x8ed400668c0c28c8,
0xa2f67f2dfa90563b, 0x728900802f0f32fa,
0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9,
0xfea126b7d78186bc, 0xe2f610c84987bfa8,
0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9,
0xc6ede63fa05d3143, 0x91503d1c79720dbb,
0xf8a95fcf88747d94, 0x75a44c6397ce912a,
0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba,
0xc24452da229b021b, 0xfbe85badce996168,
0xf2d56790ab41c2a2, 0xfae27299423fb9c3,
0x97c560ba6b0919a5, 0xdccd879fc967d41a,
0xbdb6b8e905cb600f, 0x5400e987bbc1c920,
0xed246723473e3813, 0x290123e9aab23b68,
0x9436c0760c86e30b, 0xf9a0b6720aaf6521,
0xb94470938fa89bce, 0xf808e40e8d5b3e69,
0xe7958cb87392c2c2, 0xb60b1d1230b20e04,
0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2,
0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3,
0xe2280b6c20dd5232, 0x25c6da63c38de1b0,
0x8d590723948a535f, 0x579c487e5a38ad0e,
0xb0af48ec79ace837, 0x2d835a9df0c6d851,
0xdcdb1b2798182244, 0xf8e431456cf88e65,
0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff,
0xac8b2d36eed2dac5, 0xe272467e3d222f3f,
0xd7adf884aa879177, 0x5b0ed81dcc6abb0f,
0x86ccbb52ea94baea, 0x98e947129fc2b4e9,
0xa87fea27a539e9a5, 0x3f2398d747b36224,
0xd29fe4b18e88640e, 0x8eec7f0d19a03aad,
0x83a3eeeef9153e89, 0x1953cf68300424ac,
0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7,
0xcdb02555653131b6, 0x3792f412cb06794d,
0x808e17555f3ebf11, 0xe2bbd88bbee40bd0,
0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4,
0xc8de047564d20a8b, 0xf245825a5a445275,
0xfb158592be068d2e, 0xeed6e2f0f0d56712,
0x9ced737bb6c4183d, 0x55464dd69685606b,
0xc428d05aa4751e4c, 0xaa97e14c3c26b886,
0xf53304714d9265df, 0xd53dd99f4b3066a8,
0x993fe2c6d07b7fab, 0xe546a8038efe4029,
0xbf8fdb78849a5f96, 0xde98520472bdd033,
0xef73d256a5c0f77c, 0x963e66858f6d4440,
0x95a8637627989aad, 0xdde7001379a44aa8,
0xbb127c53b17ec159, 0x5560c018580d5d52,
0xe9d71b689dde71af, 0xaab8f01e6e10b4a6,
0x9226712162ab070d, 0xcab3961304ca70e8,
0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22,
0xe45c10c42a2b3b05, 0x8cb89a7db77c506a,
0x8eb98a7a9a5b04e3, 0x77f3608e92adb242,
0xb267ed1940f1c61c, 0x55f038b237591ed3,
0xdf01e85f912e37a3, 0x6b6c46dec52f6688,
0x8b61313bbabce2c6, 0x2323ac4b3b3da015,
0xae397d8aa96c1b77, 0xabec975e0a0d081a,
0xd9c7dced53c72255, 0x96e7bd358c904a21,
0x881cea14545c7575, 0x7e50d64177da2e54,
0xaa242499697392d2, 0xdde50bd1d5d0b9e9,
0xd4ad2dbfc3d07787, 0x955e4ec64b44e864,
0x84ec3c97da624ab4, 0xbd5af13bef0b113e,
0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e,
0xcfb11ead453994ba, 0x67de18eda5814af2,
0x81ceb32c4b43fcf4, 0x80eacf948770ced7,
0xa2425ff75e14fc31, 0xa1258379a94d028d,
0xcad2f7f5359a3b3e, 0x96ee45813a04330,
0xfd87b5f28300ca0d, 0x8bca9d6e188853fc,
0x9e74d1b791e07e48, 0x775ea264cf55347e,
0xc612062576589dda, 0x95364afe032a819e,
0xf79687aed3eec551, 0x3a83ddbd83f52205,
0x9abe14cd44753b52, 0xc4926a9672793543,
0xc16d9a0095928a27, 0x75b7053c0f178294,
0xf1c90080baf72cb1, 0x5324c68b12dd6339,
0x971da05074da7bee, 0xd3f6fc16ebca5e04,
0xbce5086492111aea, 0x88f4bb1ca6bcf585,
0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6,
0x9392ee8e921d5d07, 0x3aff322e62439fd0,
0xb877aa3236a4b449, 0x9befeb9fad487c3,
0xe69594bec44de15b, 0x4c2ebe687989a9b4,
0x901d7cf73ab0acd9, 0xf9d37014bf60a11,
0xb424dc35095cd80f, 0x538484c19ef38c95,
0xe12e13424bb40e13, 0x2865a5f206b06fba,
0x8cbccc096f5088cb, 0xf93f87b7442e45d4,
0xafebff0bcb24aafe, 0xf78f69a51539d749,
0xdbe6fecebdedd5be, 0xb573440e5a884d1c,
0x89705f4136b4a597, 0x31680a88f8953031,
0xabcc77118461cefc, 0xfdc20d2b36ba7c3e,
0xd6bf94d5e57a42bc, 0x3d32907604691b4d,
0x8637bd05af6c69b5, 0xa63f9a49c2c1b110,
0xa7c5ac471b478423, 0xfcf80dc33721d54,
0xd1b71758e219652b, 0xd3c36113404ea4a9,
0x83126e978d4fdf3b, 0x645a1cac083126ea,
0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4,
0xcccccccccccccccc, 0xcccccccccccccccd,
0x8000000000000000, 0x0,
0xa000000000000000, 0x0,
0xc800000000000000, 0x0,
0xfa00000000000000, 0x0,
0x9c40000000000000, 0x0,
0xc350000000000000, 0x0,
0xf424000000000000, 0x0,
0x9896800000000000, 0x0,
0xbebc200000000000, 0x0,
0xee6b280000000000, 0x0,
0x9502f90000000000, 0x0,
0xba43b74000000000, 0x0,
0xe8d4a51000000000, 0x0,
0x9184e72a00000000, 0x0,
0xb5e620f480000000, 0x0,
0xe35fa931a0000000, 0x0,
0x8e1bc9bf04000000, 0x0,
0xb1a2bc2ec5000000, 0x0,
0xde0b6b3a76400000, 0x0,
0x8ac7230489e80000, 0x0,
0xad78ebc5ac620000, 0x0,
0xd8d726b7177a8000, 0x0,
0x878678326eac9000, 0x0,
0xa968163f0a57b400, 0x0,
0xd3c21bcecceda100, 0x0,
0x84595161401484a0, 0x0,
0xa56fa5b99019a5c8, 0x0,
0xcecb8f27f4200f3a, 0x0,
0x813f3978f8940984, 0x4000000000000000,
0xa18f07d736b90be5, 0x5000000000000000,
0xc9f2c9cd04674ede, 0xa400000000000000,
0xfc6f7c4045812296, 0x4d00000000000000,
0x9dc5ada82b70b59d, 0xf020000000000000,
0xc5371912364ce305, 0x6c28000000000000,
0xf684df56c3e01bc6, 0xc732000000000000,
0x9a130b963a6c115c, 0x3c7f400000000000,
0xc097ce7bc90715b3, 0x4b9f100000000000,
0xf0bdc21abb48db20, 0x1e86d40000000000,
0x96769950b50d88f4, 0x1314448000000000,
0xbc143fa4e250eb31, 0x17d955a000000000,
0xeb194f8e1ae525fd, 0x5dcfab0800000000,
0x92efd1b8d0cf37be, 0x5aa1cae500000000,
0xb7abc627050305ad, 0xf14a3d9e40000000,
0xe596b7b0c643c719, 0x6d9ccd05d0000000,
0x8f7e32ce7bea5c6f, 0xe4820023a2000000,
0xb35dbf821ae4f38b, 0xdda2802c8a800000,
0xe0352f62a19e306e, 0xd50b2037ad200000,
0x8c213d9da502de45, 0x4526f422cc340000,
0xaf298d050e4395d6, 0x9670b12b7f410000,
0xdaf3f04651d47b4c, 0x3c0cdd765f114000,
0x88d8762bf324cd0f, 0xa5880a69fb6ac800,
0xab0e93b6efee0053, 0x8eea0d047a457a00,
0xd5d238a4abe98068, 0x72a4904598d6d880,
0x85a36366eb71f041, 0x47a6da2b7f864750,
0xa70c3c40a64e6c51, 0x999090b65f67d924,
0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d,
0x82818f1281ed449f, 0xbff8f10e7a8921a4,
0xa321f2d7226895c7, 0xaff72d52192b6a0d,
0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490,
0xfee50b7025c36a08, 0x2f236d04753d5b4,
0x9f4f2726179a2245, 0x1d762422c946590,
0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5,
0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2,
0x9b934c3b330c8577, 0x63cc55f49f88eb2f,
0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb,
0xf316271c7fc3908a, 0x8bef464e3945ef7a,
0x97edd871cfda3a56, 0x97758bf0e3cbb5ac,
0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317,
0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd,
0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a,
0xb975d6b6ee39e436, 0xb3e2fd538e122b44,
0xe7d34c64a9c85d44, 0x60dbbca87196b616,
0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd,
0xb51d13aea4a488dd, 0x6babab6398bdbe41,
0xe264589a4dcdab14, 0xc696963c7eed2dd1,
0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2,
0xb0de65388cc8ada8, 0x3b25a55f43294bcb,
0xdd15fe86affad912, 0x49ef0eb713f39ebe,
0x8a2dbf142dfcc7ab, 0x6e3569326c784337,
0xacb92ed9397bf996, 0x49c2c37f07965404,
0xd7e77a8f87daf7fb, 0xdc33745ec97be906,
0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3,
0xa8acd7c0222311bc, 0xc40832ea0d68ce0c,
0xd2d80db02aabd62b, 0xf50a3fa490c30190,
0x83c7088e1aab65db, 0x792667c6da79e0fa,
0xa4b8cab1a1563f52, 0x577001b891185938,
0xcde6fd5e09abcf26, 0xed4c0226b55e6f86,
0x80b05e5ac60b6178, 0x544f8158315b05b4,
0xa0dc75f1778e39d6, 0x696361ae3db1c721,
0xc913936dd571c84c, 0x3bc3a19cd1e38e9,
0xfb5878494ace3a5f, 0x4ab48a04065c723,
0x9d174b2dcec0e47b, 0x62eb0d64283f9c76,
0xc45d1df942711d9a, 0x3ba5d0bd324f8394,
0xf5746577930d6500, 0xca8f44ec7ee36479,
0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb,
0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e,
0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e,
0x95d04aee3b80ece5, 0xbba1f1d158724a12,
0xbb445da9ca61281f, 0x2a8a6e45ae8edc97,
0xea1575143cf97226, 0xf52d09d71a3293bd,
0x924d692ca61be758, 0x593c2626705f9c56,
0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c,
0xe498f455c38b997a, 0xb6dfb9c0f956447,
0x8edf98b59a373fec, 0x4724bd4189bd5eac,
0xb2977ee300c50fe7, 0x58edec91ec2cb657,
0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed,
0x8b865b215899f46c, 0xbd79e0d20082ee74,
0xae67f1e9aec07187, 0xecd8590680a3aa11,
0xda01ee641a708de9, 0xe80e6f4820cc9495,
0x884134fe908658b2, 0x3109058d147fdcdd,
0xaa51823e34a7eede, 0xbd4b46f0599fd415,
0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a,
0x850fadc09923329e, 0x3e2cf6bc604ddb0,
0xa6539930bf6bff45, 0x84db8346b786151c,
0xcfe87f7cef46ff16, 0xe612641865679a63,
0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e,
0xa26da3999aef7749, 0xe3be5e330f38f09d,
0xcb090c8001ab551c, 0x5cadf5bfd3072cc5,
0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6,
0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa,
0xc646d63501a1511d, 0xb281e1fd541501b8,
0xf7d88bc24209a565, 0x1f225a7ca91a4226,
0x9ae757596946075f, 0x3375788de9b06958,
0xc1a12d2fc3978937, 0x52d6b1641c83ae,
0xf209787bb47d6b84, 0xc0678c5dbd23a49a,
0x9745eb4d50ce6332, 0xf840b7ba963646e0,
0xbd176620a501fbff, 0xb650e5a93bc3d898,
0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe,
0x93ba47c980e98cdf, 0xc66f336c36b10137,
0xb8a8d9bbe123f017, 0xb80b0047445d4184,
0xe6d3102ad96cec1d, 0xa60dc059157491e5,
0x9043ea1ac7e41392, 0x87c89837ad68db2f,
0xb454e4a179dd1877, 0x29babe4598c311fb,
0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a,
0x8ce2529e2734bb1d, 0x1899e4a65f58660c,
0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f,
0xdc21a1171d42645d, 0x76707543f4fa1f73,
0x899504ae72497eba, 0x6a06494a791c53a8,
0xabfa45da0edbde69, 0x487db9d17636892,
0xd6f8d7509292d603, 0x45a9d2845d3c42b6,
0x865b86925b9bc5c2, 0xb8a2392ba45a9b2,
0xa7f26836f282b732, 0x8e6cac7768d7141e,
0xd1ef0244af2364ff, 0x3207d795430cd926,
0x8335616aed761f1f, 0x7f44e6bd49e807b8,
0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6,
0xcd036837130890a1, 0x36dba887c37a8c0f,
0x802221226be55a64, 0xc2494954da2c9789,
0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c,
0xc83553c5c8965d3d, 0x6f92829494e5acc7,
0xfa42a8b73abbf48c, 0xcb772339ba1f17f9,
0x9c69a97284b578d7, 0xff2a760414536efb,
0xc38413cf25e2d70d, 0xfef5138519684aba,
0xf46518c2ef5b8cd1, 0x7eb258665fc25d69,
0x98bf2f79d5993802, 0xef2f773ffbd97a61,
0xbeeefb584aff8603, 0xaafb550ffacfd8fa,
0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38,
0x952ab45cfa97a0b2, 0xdd945a747bf26183,
0xba756174393d88df, 0x94f971119aeef9e4,
0xe912b9d1478ceb17, 0x7a37cd5601aab85d,
0x91abb422ccb812ee, 0xac62e055c10ab33a,
0xb616a12b7fe617aa, 0x577b986b314d6009,
0xe39c49765fdf9d94, 0xed5a7e85fda0b80b,
0x8e41ade9fbebc27d, 0x14588f13be847307,
0xb1d219647ae6b31c, 0x596eb2d8ae258fc8,
0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb,
0x8aec23d680043bee, 0x25de7bb9480d5854,
0xada72ccc20054ae9, 0xaf561aa79a10ae6a,
0xd910f7ff28069da4, 0x1b2ba1518094da04,
0x87aa9aff79042286, 0x90fb44d2f05d0842,
0xa99541bf57452b28, 0x353a1607ac744a53,
0xd3fa922f2d1675f2, 0x42889b8997915ce8,
0x847c9b5d7c2e09b7, 0x69956135febada11,
0xa59bc234db398c25, 0x43fab9837e699095,
0xcf02b2c21207ef2e, 0x94f967e45e03f4bb,
0x8161afb94b44f57d, 0x1d1be0eebac278f5,
0xa1ba1ba79e1632dc, 0x6462d92a69731732,
0xca28a291859bbf93, 0x7d7b8f7503cfdcfe,
0xfcb2cb35e702af78, 0x5cda735244c3d43e,
0x9defbf01b061adab, 0x3a0888136afa64a7,
0xc56baec21c7a1916, 0x88aaa1845b8fdd0,
0xf6c69a72a3989f5b, 0x8aad549e57273d45,
0x9a3c2087a63f6399, 0x36ac54e2f678864b,
0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd,
0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5,
0x969eb7c47859e743, 0x9f644ae5a4b1b325,
0xbc4665b596706114, 0x873d5d9f0dde1fee,
0xeb57ff22fc0c7959, 0xa90cb506d155a7ea,
0x9316ff75dd87cbd8, 0x9a7f12442d588f2,
0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f,
0xe5d3ef282a242e81, 0x8f1668c8a86da5fa,
0x8fa475791a569d10, 0xf96e017d694487bc,
0xb38d92d760ec4455, 0x37c981dcc395a9ac,
0xe070f78d3927556a, 0x85bbe253f47b1417,
0x8c469ab843b89562, 0x93956d7478ccec8e,
0xaf58416654a6babb, 0x387ac8d1970027b2,
0xdb2e51bfe9d0696a, 0x6997b05fcc0319e,
0x88fcf317f22241e2, 0x441fece3bdf81f03,
0xab3c2fddeeaad25a, 0xd527e81cad7626c3,
0xd60b3bd56a5586f1, 0x8a71e223d8d3b074,
0x85c7056562757456, 0xf6872d5667844e49,
0xa738c6bebb12d16c, 0xb428f8ac016561db,
0xd106f86e69d785c7, 0xe13336d701beba52,
0x82a45b450226b39c, 0xecc0024661173473,
0xa34d721642b06084, 0x27f002d7f95d0190,
0xcc20ce9bd35c78a5, 0x31ec038df7b441f4,
0xff290242c83396ce, 0x7e67047175a15271,
0x9f79a169bd203e41, 0xf0062c6e984d386,
0xc75809c42c684dd1, 0x52c07b78a3e60868,
0xf92e0c3537826145, 0xa7709a56ccdf8a82,
0x9bbcc7a142b17ccb, 0x88a66076400bb691,
0xc2abf989935ddbfe, 0x6acff893d00ea435,
0xf356f7ebf83552fe, 0x583f6b8c4124d43,
0x98165af37b2153de, 0xc3727a337a8b704a,
0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c,
0xeda2ee1c7064130c, 0x1162def06f79df73,
0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8,
0xb9a74a0637ce2ee1, 0x6d953e2bd7173692,
0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437,
0x910ab1d4db9914a0, 0x1d9c9892400a22a2,
0xb54d5e4a127f59c8, 0x2503beb6d00cab4b,
0xe2a0b5dc971f303a, 0x2e44ae64840fd61d,
0x8da471a9de737e24, 0x5ceaecfed289e5d2,
0xb10d8e1456105dad, 0x7425a83e872c5f47,
0xdd50f1996b947518, 0xd12f124e28f77719,
0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f,
0xace73cbfdc0bfb7b, 0x636cc64d1001550b,
0xd8210befd30efa5a, 0x3c47f7e05401aa4e,
0x8714a775e3e95c78, 0x65acfaec34810a71,
0xa8d9d1535ce3b396, 0x7f1839a741a14d0d,
0xd31045a8341ca07c, 0x1ede48111209a050,
0x83ea2b892091e44d, 0x934aed0aab460432,
0xa4e4b66b68b65d60, 0xf81da84d5617853f,
0xce1de40642e3f4b9, 0x36251260ab9d668e,
0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019,
0xa1075a24e4421730, 0xb24cf65b8612f81f,
0xc94930ae1d529cfc, 0xdee033f26797b627,
0xfb9b7cd9a4a7443c, 0x169840ef017da3b1,
0x9d412e0806e88aa5, 0x8e1f289560ee864e,
0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2,
0xf5b5d7ec8acb58a2, 0xae10af696774b1db,
0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29,
0xbff610b0cc6edd3f, 0x17fd090a58d32af3,
0xeff394dcff8a948e, 0xddfc4b4cef07f5b0,
0x95f83d0a1fb69cd9, 0x4abdaf101564f98e,
0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1,
0xea53df5fd18d5513, 0x84c86189216dc5ed,
0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4,
0xb7118682dbb66a77, 0x3fbc8c33221dc2a1,
0xe4d5e82392a40515, 0xfabaf3feaa5334a,
0x8f05b1163ba6832d, 0x29cb4d87f2a7400e,
0xb2c71d5bca9023f8, 0x743e20e9ef511012,
0xdf78e4b2bd342cf6, 0x914da9246b255416,
0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e,
0xae9672aba3d0c320, 0xa184ac2473b529b1,
0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e,
0x8865899617fb1871, 0x7e2fa67c7a658892,
0xaa7eebfb9df9de8d, 0xddbb901b98feeab7,
0xd51ea6fa85785631, 0x552a74227f3ea565,
0x8533285c936b35de, 0xd53a88958f87275f,
0xa67ff273b8460356, 0x8a892abaf368f137,
0xd01fef10a657842c, 0x2d2b7569b0432d85,
0x8213f56a67f6b29b, 0x9c3b29620e29fc73,
0xa298f2c501f45f42, 0x8349f3ba91b47b8f,
0xcb3f2f7642717713, 0x241c70a936219a73,
0xfe0efb53d30dd4d7, 0xed238cd383aa0110,
0x9ec95d1463e8a506, 0xf4363804324a40aa,
0xc67bb4597ce2ce48, 0xb143c6053edcd0d5,
0xf81aa16fdc1b81da, 0xdd94b7868e94050a,
0x9b10a4e5e9913128, 0xca7cf2b4191c8326,
0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0,
0xf24a01a73cf2dccf, 0xbc633b39673c8cec,
0x976e41088617ca01, 0xd5be0503e085d813,
0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18,
0xec9c459d51852ba2, 0xddf8e7d60ed1219e,
0x93e1ab8252f33b45, 0xcabb90e5c942b503,
0xb8da1662e7b00a17, 0x3d6a751f3b936243,
0xe7109bfba19c0c9d, 0xcc512670a783ad4,
0x906a617d450187e2, 0x27fb2b80668b24c5,
0xb484f9dc9641e9da, 0xb1f9f660802dedf6,
0xe1a63853bbd26451, 0x5e7873f8a0396973,
0x8d07e33455637eb2, 0xdb0b487b6423e1e8,
0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62,
0xdc5c5301c56b75f7, 0x7641a140cc7810fb,
0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d,
0xac2820d9623bf429, 0x546345fa9fbdcd44,
0xd732290fbacaf133, 0xa97c177947ad4095,
0x867f59a9d4bed6c0, 0x49ed8eabcccc485d,
0xa81f301449ee8c70, 0x5c68f256bfff5a74,
0xd226fc195c6a2f8c, 0x73832eec6fff3111,
0x83585d8fd9c25db7, 0xc831fd53c5ff7eab,
0xa42e74f3d032f525, 0xba3e7ca8b77f5e55,
0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb,
0x80444b5e7aa7cf85, 0x7980d163cf5b81b3,
0xa0555e361951c366, 0xd7e105bcc332621f,
0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7,
0xfa856334878fc150, 0xb14f98f6f0feb951,
0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3,
0xc3b8358109e84f07, 0xa862f80ec4700c8,
0xf4a642e14c6262c8, 0xcd27bb612758c0fa,
0x98e7e9cccfbd7dbd, 0x8038d51cb897789c,
0xbf21e44003acdd2c, 0xe0470a63e6bd56c3,
0xeeea5d5004981478, 0x1858ccfce06cac74,
0x95527a5202df0ccb, 0xf37801e0c43ebc8,
0xbaa718e68396cffd, 0xd30560258f54e6ba,
0xe950df20247c83fd, 0x47c6b82ef32a2069,
0x91d28b7416cdd27e, 0x4cdc331d57fa5441,
0xb6472e511c81471d, 0xe0133fe4adf8e952,
0xe3d8f9e563a198e5, 0x58180fddd97723a6,
0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648,
};
};
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
template <class unused>
constexpr uint64_t
powers_template<unused>::power_of_five_128[number_of_entries];
#endif
using powers = powers_template<>;
} // namespace fast_float
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,401 @@
#ifndef FASTFLOAT_PARSE_NUMBER_H
#define FASTFLOAT_PARSE_NUMBER_H
#include "ascii_number.h"
#include "decimal_to_binary.h"
#include "digit_comparison.h"
#include "float_common.h"
#include <cmath>
#include <cstring>
#include <limits>
#include <system_error>
namespace fast_float {
namespace detail {
/**
* Special case +inf, -inf, nan, infinity, -infinity.
* The case comparisons could be made much faster given that we know that the
* strings a null-free and fixed.
**/
template <typename T, typename UC>
from_chars_result_t<UC>
FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first, UC const *last,
T &value, chars_format fmt) noexcept {
from_chars_result_t<UC> answer{};
answer.ptr = first;
answer.ec = std::errc(); // be optimistic
// assume first < last, so dereference without checks;
bool const minusSign = (*first == UC('-'));
// C++17 20.19.3.(7.1) explicitly forbids '+' sign here
if ((*first == UC('-')) ||
(uint64_t(fmt & chars_format::allow_leading_plus) &&
(*first == UC('+')))) {
++first;
}
if (last - first >= 3) {
if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
answer.ptr = (first += 3);
value = minusSign ? -std::numeric_limits<T>::quiet_NaN()
: std::numeric_limits<T>::quiet_NaN();
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7,
// C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
if (first != last && *first == UC('(')) {
for (UC const *ptr = first + 1; ptr != last; ++ptr) {
if (*ptr == UC(')')) {
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
break;
} else if (!((UC('a') <= *ptr && *ptr <= UC('z')) ||
(UC('A') <= *ptr && *ptr <= UC('Z')) ||
(UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
break; // forbidden char, not nan(n-char-seq-opt)
}
}
return answer;
}
if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
if ((last - first >= 8) &&
fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
answer.ptr = first + 8;
} else {
answer.ptr = first + 3;
}
value = minusSign ? -std::numeric_limits<T>::infinity()
: std::numeric_limits<T>::infinity();
return answer;
}
}
answer.ec = std::errc::invalid_argument;
return answer;
}
/**
* Returns true if the floating-pointing rounding mode is to 'nearest'.
* It is the default on most system. This function is meant to be inexpensive.
* Credit : @mwalcott3
*/
fastfloat_really_inline bool rounds_to_nearest() noexcept {
// https://lemire.me/blog/2020/06/26/gcc-not-nearest/
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
return false;
#endif
// See
// A fast function to check your floating-point rounding mode
// https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
//
// This function is meant to be equivalent to :
// prior: #include <cfenv>
// return fegetround() == FE_TONEAREST;
// However, it is expected to be much faster than the fegetround()
// function call.
//
// The volatile keyword prevents the compiler from computing the function
// at compile-time.
// There might be other ways to prevent compile-time optimizations (e.g.,
// asm). The value does not need to be std::numeric_limits<float>::min(), any
// small value so that 1 + x should round to 1 would do (after accounting for
// excess precision, as in 387 instructions).
static float volatile fmin = std::numeric_limits<float>::min();
float fmini = fmin; // we copy it so that it gets loaded at most once.
//
// Explanation:
// Only when fegetround() == FE_TONEAREST do we have that
// fmin + 1.0f == 1.0f - fmin.
//
// FE_UPWARD:
// fmin + 1.0f > 1
// 1.0f - fmin == 1
//
// FE_DOWNWARD or FE_TOWARDZERO:
// fmin + 1.0f == 1
// 1.0f - fmin < 1
//
// Note: This may fail to be accurate if fast-math has been
// enabled, as rounding conventions may not apply.
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(push)
// todo: is there a VS warning?
// see
// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
#elif defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfloat-equal"
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
return (fmini + 1.0f == 1.0f - fmini);
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(pop)
#elif defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
}
} // namespace detail
template <typename T> struct from_chars_caller {
template <typename UC>
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
call(UC const *first, UC const *last, T &value,
parse_options_t<UC> options) noexcept {
return from_chars_advanced(first, last, value, options);
}
};
#ifdef __STDCPP_FLOAT32_T__
template <> struct from_chars_caller<std::float32_t> {
template <typename UC>
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
call(UC const *first, UC const *last, std::float32_t &value,
parse_options_t<UC> options) noexcept {
// if std::float32_t is defined, and we are in C++23 mode; macro set for
// float32; set value to float due to equivalence between float and
// float32_t
float val;
auto ret = from_chars_advanced(first, last, val, options);
value = val;
return ret;
}
};
#endif
#ifdef __STDCPP_FLOAT64_T__
template <> struct from_chars_caller<std::float64_t> {
template <typename UC>
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
call(UC const *first, UC const *last, std::float64_t &value,
parse_options_t<UC> options) noexcept {
// if std::float64_t is defined, and we are in C++23 mode; macro set for
// float64; set value as double due to equivalence between double and
// float64_t
double val;
auto ret = from_chars_advanced(first, last, val, options);
value = val;
return ret;
}
};
#endif
template <typename T, typename UC, typename>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value,
chars_format fmt /*= chars_format::general*/) noexcept {
return from_chars_caller<T>::call(first, last, value,
parse_options_t<UC>(fmt));
}
/**
* This function overload takes parsed_number_string_t structure that is created
* and populated either by from_chars_advanced function taking chars range and
* parsing options or other parsing custom function implemented by user.
*/
template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {
static_assert(is_supported_float_type<T>::value,
"only some floating-point types are supported");
static_assert(is_supported_char_type<UC>::value,
"only char, wchar_t, char16_t and char32_t are supported");
from_chars_result_t<UC> answer;
answer.ec = std::errc(); // be optimistic
answer.ptr = pns.lastmatch;
// The implementation of the Clinger's fast path is convoluted because
// we want round-to-nearest in all cases, irrespective of the rounding mode
// selected on the thread.
// We proceed optimistically, assuming that detail::rounds_to_nearest()
// returns true.
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent &&
pns.exponent <= binary_format<T>::max_exponent_fast_path() &&
!pns.too_many_digits) {
// Unfortunately, the conventional Clinger's fast path is only possible
// when the system rounds to the nearest float.
//
// We expect the next branch to almost always be selected.
// We could check it first (before the previous branch), but
// there might be performance advantages at having the check
// be last.
if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
// We have that fegetround() == FE_TONEAREST.
// Next is Clinger's fast path.
if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) {
value = T(pns.mantissa);
if (pns.exponent < 0) {
value = value / binary_format<T>::exact_power_of_ten(-pns.exponent);
} else {
value = value * binary_format<T>::exact_power_of_ten(pns.exponent);
}
if (pns.negative) {
value = -value;
}
return answer;
}
} else {
// We do not have that fegetround() == FE_TONEAREST.
// Next is a modified Clinger's fast path, inspired by Jakub Jelínek's
// proposal
if (pns.exponent >= 0 &&
pns.mantissa <=
binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
#if defined(__clang__) || defined(FASTFLOAT_32BIT)
// Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
if (pns.mantissa == 0) {
value = pns.negative ? T(-0.) : T(0.);
return answer;
}
#endif
value = T(pns.mantissa) *
binary_format<T>::exact_power_of_ten(pns.exponent);
if (pns.negative) {
value = -value;
}
return answer;
}
}
}
adjusted_mantissa am =
compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
if (pns.too_many_digits && am.power2 >= 0) {
if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
}
}
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa)
// and we have an invalid power (am.power2 < 0), then we need to go the long
// way around again. This is very uncommon.
if (am.power2 < 0) {
am = digit_comp<T>(pns, am);
}
to_float(pns.negative, am, value);
// Test for over/underflow.
if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) ||
am.power2 == binary_format<T>::infinite_power()) {
answer.ec = std::errc::result_out_of_range;
}
return answer;
}
template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_float_advanced(UC const *first, UC const *last, T &value,
parse_options_t<UC> options) noexcept {
static_assert(is_supported_float_type<T>::value,
"only some floating-point types are supported");
static_assert(is_supported_char_type<UC>::value,
"only char, wchar_t, char16_t and char32_t are supported");
chars_format const fmt = detail::adjust_for_feature_macros(options.format);
from_chars_result_t<UC> answer;
if (uint64_t(fmt & chars_format::skip_white_space)) {
while ((first != last) && fast_float::is_space(*first)) {
first++;
}
}
if (first == last) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
}
parsed_number_string_t<UC> pns =
uint64_t(fmt & detail::basic_json_fmt)
? parse_number_string<true, UC>(first, last, options)
: parse_number_string<false, UC>(first, last, options);
if (!pns.valid) {
if (uint64_t(fmt & chars_format::no_infnan)) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
} else {
return detail::parse_infnan(first, last, value, fmt);
}
}
// call overload that takes parsed_number_string_t directly.
return from_chars_advanced(pns, value);
}
template <typename T, typename UC, typename>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value, int base) noexcept {
static_assert(is_supported_integer_type<T>::value,
"only integer types are supported");
static_assert(is_supported_char_type<UC>::value,
"only char, wchar_t, char16_t and char32_t are supported");
parse_options_t<UC> options;
options.base = base;
return from_chars_advanced(first, last, value, options);
}
template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_int_advanced(UC const *first, UC const *last, T &value,
parse_options_t<UC> options) noexcept {
static_assert(is_supported_integer_type<T>::value,
"only integer types are supported");
static_assert(is_supported_char_type<UC>::value,
"only char, wchar_t, char16_t and char32_t are supported");
chars_format const fmt = detail::adjust_for_feature_macros(options.format);
int const base = options.base;
from_chars_result_t<UC> answer;
if (uint64_t(fmt & chars_format::skip_white_space)) {
while ((first != last) && fast_float::is_space(*first)) {
first++;
}
}
if (first == last || base < 2 || base > 36) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
}
return parse_int_string(first, last, value, options);
}
template <size_t TypeIx> struct from_chars_advanced_caller {
static_assert(TypeIx > 0, "unsupported type");
};
template <> struct from_chars_advanced_caller<1> {
template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
call(UC const *first, UC const *last, T &value,
parse_options_t<UC> options) noexcept {
return from_chars_float_advanced(first, last, value, options);
}
};
template <> struct from_chars_advanced_caller<2> {
template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
call(UC const *first, UC const *last, T &value,
parse_options_t<UC> options) noexcept {
return from_chars_int_advanced(first, last, value, options);
}
};
template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(UC const *first, UC const *last, T &value,
parse_options_t<UC> options) noexcept {
return from_chars_advanced_caller<
size_t(is_supported_float_type<T>::value) +
2 * size_t(is_supported_integer_type<T>::value)>::call(first, last, value,
options);
}
} // namespace fast_float
#endif