kicad-source/libs/kimath/src/geometry/shape_collisions.cpp

1115 lines
33 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 CERN
2020-12-12 12:36:09 +00:00
* Copyright (C) 2015-2020 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <cmath>
#include <limits.h> // for INT_MAX
#include <geometry/seg.h> // for SEG
#include <geometry/shape.h>
2018-05-16 13:06:44 -07:00
#include <geometry/shape_arc.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_compound.h>
#include <math/vector2d.h>
2013-09-23 17:02:25 +02:00
typedef VECTOR2I::extended_type ecoord;
2020-12-12 12:36:09 +00:00
static inline bool Collide( const SHAPE_CIRCLE& aA, const SHAPE_CIRCLE& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
{
ecoord min_dist = aClearance + aA.GetRadius() + aB.GetRadius();
ecoord min_dist_sq = min_dist * min_dist;
const VECTOR2I delta = aB.GetCenter() - aA.GetCenter();
ecoord dist_sq = delta.SquaredEuclideanNorm();
if( dist_sq == 0 || dist_sq < min_dist_sq )
{
if( aActual )
*aActual = std::max( 0, (int) sqrt( dist_sq ) - aA.GetRadius() - aB.GetRadius() );
if( aLocation )
*aLocation = ( aA.GetCenter() + aB.GetCenter() ) / 2;
if( aMTV )
*aMTV = delta.Resize( min_dist - sqrt( dist_sq ) + 3 ); // fixme: apparent rounding error
return true;
}
return false;
}
2013-10-14 20:40:36 +02:00
static inline bool Collide( const SHAPE_RECT& aA, const SHAPE_CIRCLE& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
{
const VECTOR2I c = aB.GetCenter();
const VECTOR2I p0 = aA.GetPosition();
const VECTOR2I size = aA.GetSize();
2020-12-12 12:36:09 +00:00
const int r = aB.GetRadius();
const int min_dist = aClearance + r;
const ecoord min_dist_sq = SEG::Square( min_dist );
const VECTOR2I vts[] =
{
VECTOR2I( p0.x, p0.y ),
VECTOR2I( p0.x, p0.y + size.y ),
VECTOR2I( p0.x + size.x, p0.y + size.y ),
VECTOR2I( p0.x + size.x, p0.y ),
VECTOR2I( p0.x, p0.y )
};
2020-12-12 12:36:09 +00:00
ecoord nearest_side_dist_sq = VECTOR2I::ECOORD_MAX;
VECTOR2I nearest;
bool inside = c.x >= p0.x && c.x <= ( p0.x + size.x )
&& c.y >= p0.y && c.y <= ( p0.y + size.y );
// If we're not looking for MTV or actual, short-circuit once we find a hard collision
if( inside && !aActual && !aLocation && !aMTV )
return true;
for( int i = 0; i < 4; i++ )
{
const SEG side( vts[i], vts[ i + 1] );
VECTOR2I pn = side.NearestPoint( c );
2020-07-02 22:52:37 +01:00
ecoord side_dist_sq = ( pn - c ).SquaredEuclideanNorm();
if( side_dist_sq < nearest_side_dist_sq )
{
nearest = pn;
nearest_side_dist_sq = side_dist_sq;
if( aMTV )
continue;
if( nearest_side_dist_sq == 0 )
break;
// If we're not looking for aActual then any collision will do
if( nearest_side_dist_sq < min_dist_sq && !aActual )
break;
}
}
if( inside || nearest_side_dist_sq == 0 || nearest_side_dist_sq < min_dist_sq )
{
if( aLocation )
*aLocation = nearest;
if( aActual )
*aActual = std::max( 0, (int) sqrt( nearest_side_dist_sq ) - r );
if( aMTV )
{
VECTOR2I delta = c - nearest;
if( inside )
*aMTV = -delta.Resize( abs( min_dist + 1 + sqrt( nearest_side_dist_sq ) ) + 1 );
else
*aMTV = delta.Resize( abs( min_dist + 1 - sqrt( nearest_side_dist_sq ) ) + 1 );
}
return true;
}
return false;
}
static VECTOR2I pushoutForce( const SHAPE_CIRCLE& aA, const SEG& aB, int aClearance )
{
VECTOR2I f( 0, 0 );
const VECTOR2I c = aA.GetCenter();
const VECTOR2I nearest = aB.NearestPoint( c );
const int r = aA.GetRadius();
int dist = ( nearest - c ).EuclideanNorm();
int min_dist = aClearance + r;
if( dist < min_dist )
{
for( int corr = 0; corr < 5; corr++ )
{
f = ( aA.GetCenter() - nearest ).Resize( min_dist - dist + corr );
if( aB.Distance( c + f ) >= min_dist )
break;
}
}
return f;
}
static inline bool Collide( const SHAPE_CIRCLE& aA, const SHAPE_LINE_CHAIN_BASE& aB,
int aClearance, int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
{
int closest_dist = INT_MAX;
int closest_mtv_dist = INT_MAX;
VECTOR2I nearest;
int closest_mtv_seg = -1;
if( aB.IsClosed() && aB.PointInside( aA.GetCenter() ) )
{
nearest = aA.GetCenter();
closest_dist = 0;
if( aMTV )
{
for( int s = 0; s < aB.GetSegmentCount(); s++ )
{
int dist = aB.GetSegment(s).Distance( aA.GetCenter() );
if( dist < closest_mtv_dist )
{
closest_mtv_dist = dist;
closest_mtv_seg = s;
}
}
}
}
else
{
2020-12-09 23:12:44 +00:00
for( size_t s = 0; s < aB.GetSegmentCount(); s++ )
{
int collision_dist = 0;
VECTOR2I pn;
if( aA.Collide( aB.GetSegment( s ), aClearance,
aActual || aLocation ? &collision_dist : nullptr,
aLocation ? &pn : nullptr ) )
{
if( collision_dist < closest_dist )
{
nearest = pn;
closest_dist = collision_dist;
}
if( closest_dist == 0 )
break;
// If we're not looking for aActual then any collision will do
if( !aActual )
break;
}
}
}
if( closest_dist == 0 || closest_dist < aClearance )
{
if( aLocation )
*aLocation = nearest;
if( aActual )
*aActual = closest_dist;
if( aMTV )
{
SHAPE_CIRCLE cmoved( aA );
VECTOR2I f_total( 0, 0 );
VECTOR2I f;
if (closest_mtv_seg >= 0)
{
SEG cs = aB.GetSegment( closest_mtv_seg );
VECTOR2I np = cs.NearestPoint( aA.GetCenter() );
f = ( np - aA.GetCenter() ) + ( np - aA.GetCenter() ).Resize( aA.GetRadius() );
}
cmoved.SetCenter( cmoved.GetCenter() + f );
f_total += f;
for( int s = 0; s < aB.GetSegmentCount(); s++ )
{
VECTOR2I f = pushoutForce( cmoved, aB.GetSegment( s ), aClearance );
cmoved.SetCenter( cmoved.GetCenter() + f );
f_total += f;
}
*aMTV = f_total;
}
return true;
}
return false;
}
static inline bool Collide( const SHAPE_CIRCLE& aA, const SHAPE_SEGMENT& aSeg, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
{
if( aA.Collide( aSeg.GetSeg(), aClearance + aSeg.GetWidth() / 2, aActual, aLocation ) )
{
if( aMTV )
*aMTV = -pushoutForce( aA, aSeg.GetSeg(), aClearance + aSeg.GetWidth() / 2);
if( aActual )
*aActual = std::max( 0, *aActual - aSeg.GetWidth() / 2 );
return true;
}
return false;
}
static inline bool Collide( const SHAPE_LINE_CHAIN_BASE& aA, const SHAPE_LINE_CHAIN_BASE& aB,
int aClearance, int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
{
2020-12-12 12:36:09 +00:00
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
2020-07-03 16:12:28 +01:00
int closest_dist = INT_MAX;
VECTOR2I nearest;
if( aB.IsClosed() && aA.GetPointCount() > 0 && aB.PointInside( aA.GetPoint( 0 ) ) )
{
closest_dist = 0;
nearest = aA.GetPoint( 0 );
}
else
{
2020-12-09 23:12:44 +00:00
for( size_t i = 0; i < aB.GetSegmentCount(); i++ )
{
int collision_dist = 0;
VECTOR2I pn;
if( aB.Type() == SH_LINE_CHAIN )
{
const SHAPE_LINE_CHAIN* aB_line_chain = static_cast<const SHAPE_LINE_CHAIN*>( &aB );
// ignore arcs - we will collide these separately
if( aB_line_chain->IsArcSegment( i ) )
continue;
}
if( aA.Collide( aB.GetSegment( i ), aClearance,
aActual || aLocation ? &collision_dist : nullptr,
aLocation ? &pn : nullptr ) )
{
if( collision_dist < closest_dist )
{
nearest = pn;
closest_dist = collision_dist;
}
if( closest_dist == 0 )
break;
// If we're not looking for aActual then any collision will do
if( !aActual )
break;
}
}
if( aB.Type() == SH_LINE_CHAIN )
{
const SHAPE_LINE_CHAIN* aB_line_chain = static_cast<const SHAPE_LINE_CHAIN*>( &aB );
for( size_t i = 0; i < aB_line_chain->ArcCount(); i++ )
{
const SHAPE_ARC& arc = aB_line_chain->Arc( i );
// The arcs in the chain should have zero width
wxASSERT_MSG( arc.GetWidth() == 0, "Invalid arc width - should be zero" );
if( arc.Collide( &aA, aClearance, aActual, aLocation ) )
return true;
}
}
}
if( closest_dist == 0 || closest_dist < aClearance )
{
if( aLocation )
*aLocation = nearest;
if( aActual )
*aActual = closest_dist;
return true;
}
return false;
}
static inline bool Collide( const SHAPE_RECT& aA, const SHAPE_LINE_CHAIN_BASE& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
{
2020-12-12 12:36:09 +00:00
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
int closest_dist = INT_MAX;
VECTOR2I nearest;
if( aB.IsClosed() && aB.PointInside( aA.Centre() ) )
{
nearest = aA.Centre();
closest_dist = 0;
}
else
{
2020-12-09 23:12:44 +00:00
for( size_t s = 0; s < aB.GetSegmentCount(); s++ )
{
int collision_dist = 0;
VECTOR2I pn;
if( aA.Collide( aB.GetSegment( s ), aClearance,
aActual || aLocation ? &collision_dist : nullptr,
aLocation ? &pn : nullptr ) )
{
if( collision_dist < closest_dist )
{
nearest = pn;
closest_dist = collision_dist;
}
if( closest_dist == 0 )
break;
// If we're not looking for aActual then any collision will do
if( !aActual )
break;
}
}
}
if( closest_dist == 0 || closest_dist < aClearance )
{
if( aLocation )
*aLocation = nearest;
if( aActual )
*aActual = closest_dist;
2020-07-03 16:12:28 +01:00
return true;
}
return false;
}
2020-12-12 12:36:09 +00:00
static inline bool Collide( const SHAPE_RECT& aA, const SHAPE_SEGMENT& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
{
2020-12-12 12:36:09 +00:00
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
bool rv = aA.Collide( aB.GetSeg(), aClearance + aB.GetWidth() / 2, aActual, aLocation );
2020-07-03 16:12:28 +01:00
if( aActual )
*aActual = std::max( 0, *aActual - aB.GetWidth() / 2 );
return rv;
}
static inline bool Collide( const SHAPE_SEGMENT& aA, const SHAPE_SEGMENT& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
{
2020-12-12 12:36:09 +00:00
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
bool rv = aA.Collide( aB.GetSeg(), aClearance + aB.GetWidth() / 2, aActual, aLocation );
if( aActual )
*aActual = std::max( 0, *aActual - aB.GetWidth() / 2 );
return rv;
}
static inline bool Collide( const SHAPE_LINE_CHAIN_BASE& aA, const SHAPE_SEGMENT& aB,
int aClearance, int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
{
2020-12-12 12:36:09 +00:00
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
bool rv = aA.Collide( aB.GetSeg(), aClearance + aB.GetWidth() / 2, aActual, aLocation );
if( aActual )
*aActual = std::max( 0, *aActual - aB.GetWidth() / 2 );
return rv;
}
static inline bool Collide( const SHAPE_RECT& aA, const SHAPE_RECT& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
{
return Collide( aA.Outline(), aB.Outline(), aClearance, aActual, aLocation, aMTV );
}
2020-12-12 12:36:09 +00:00
2018-05-16 13:06:44 -07:00
static inline bool Collide( const SHAPE_ARC& aA, const SHAPE_RECT& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
2018-05-16 13:06:44 -07:00
{
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
const SHAPE_LINE_CHAIN lc( aA );
2020-12-12 12:36:09 +00:00
bool rv = Collide( lc, aB.Outline(), aClearance + aA.GetWidth() / 2, aActual, aLocation, aMTV );
if( rv && aActual )
*aActual = std::max( 0, *aActual - aA.GetWidth() / 2 );
return rv;
2018-05-16 13:06:44 -07:00
}
2020-12-12 12:36:09 +00:00
2018-05-16 13:06:44 -07:00
static inline bool Collide( const SHAPE_ARC& aA, const SHAPE_CIRCLE& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
2018-05-16 13:06:44 -07:00
{
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
const SHAPE_LINE_CHAIN lc( aA );
2018-05-16 13:06:44 -07:00
bool rv = Collide( aB, lc, aClearance + aA.GetWidth() / 2, aActual, aLocation, aMTV );
if( rv && aActual )
*aActual = std::max( 0, *aActual - aA.GetWidth() / 2 );
2018-05-16 13:06:44 -07:00
return rv;
}
2020-12-12 12:36:09 +00:00
2018-05-16 13:06:44 -07:00
static inline bool Collide( const SHAPE_ARC& aA, const SHAPE_LINE_CHAIN& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
2018-05-16 13:06:44 -07:00
{
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
int closest_dist = INT_MAX;
VECTOR2I nearest;
2020-12-12 12:36:09 +00:00
if( aB.IsClosed() && aB.PointInside( aA.GetP0() ) )
{
closest_dist = 0;
nearest = aA.GetP0();
}
else
{
for( size_t i = 0; i < aB.GetSegmentCount(); i++ )
{
int collision_dist = 0;
VECTOR2I pn;
// ignore arcs - we will collide these separately
if( aB.IsArcSegment( i ) )
continue;
if( aA.Collide( aB.GetSegment( i ), aClearance,
aActual || aLocation ? &collision_dist : nullptr,
aLocation ? &pn : nullptr ) )
{
if( collision_dist < closest_dist )
{
nearest = pn;
closest_dist = collision_dist;
}
if( closest_dist == 0 )
break;
// If we're not looking for aActual then any collision will do
if( !aActual )
break;
}
}
for( size_t i = 0; i < aB.ArcCount(); i++ )
{
const SHAPE_ARC& arc = aB.Arc( i );
// The arcs in the chain should have zero width
wxASSERT_MSG( arc.GetWidth() == 0, "Invalid arc width - should be zero" );
if( arc.Collide( &aA, aClearance, aActual, aLocation ) )
return true;
}
}
if( closest_dist == 0 || closest_dist < aClearance )
{
if( aLocation )
*aLocation = nearest;
if( aActual )
*aActual = closest_dist;
return true;
}
return false;
2018-05-16 13:06:44 -07:00
}
2020-12-12 12:36:09 +00:00
2018-05-16 13:06:44 -07:00
static inline bool Collide( const SHAPE_ARC& aA, const SHAPE_SEGMENT& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
2018-05-16 13:06:44 -07:00
{
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
const SHAPE_LINE_CHAIN lc( aA );
2020-12-12 12:36:09 +00:00
bool rv = Collide( lc, aB, aClearance + aA.GetWidth() / 2, aActual, aLocation, aMTV );
if( rv && aActual )
*aActual = std::max( 0, *aActual - aA.GetWidth() / 2 );
return rv;
2018-05-16 13:06:44 -07:00
}
2020-12-12 12:36:09 +00:00
static inline bool Collide( const SHAPE_ARC& aA, const SHAPE_LINE_CHAIN_BASE& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
2018-05-16 13:06:44 -07:00
{
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
2021-07-26 17:14:05 +01:00
int closest_dist = INT_MAX;
VECTOR2I nearest;
2021-07-26 17:14:05 +01:00
if( aB.IsClosed() && aB.PointInside( aA.GetP0() ) )
{
closest_dist = 0;
nearest = aA.GetP0();
}
else
{
for( size_t i = 0; i < aB.GetSegmentCount(); i++ )
{
int collision_dist = 0;
VECTOR2I pn;
2021-07-26 17:14:05 +01:00
if( aA.Collide( aB.GetSegment( i ), aClearance,
aActual || aLocation ? &collision_dist : nullptr,
aLocation ? &pn : nullptr ) )
{
if( collision_dist < closest_dist )
{
nearest = pn;
closest_dist = collision_dist;
}
2021-07-26 17:14:05 +01:00
if( closest_dist == 0 )
break;
// If we're not looking for aActual then any collision will do
if( !aActual )
break;
}
}
}
if( closest_dist == 0 || closest_dist < aClearance )
{
if( aLocation )
*aLocation = nearest;
if( aActual )
*aActual = closest_dist;
return true;
}
return false;
2018-05-16 13:06:44 -07:00
}
2020-12-12 12:36:09 +00:00
2018-05-16 13:06:44 -07:00
static inline bool Collide( const SHAPE_ARC& aA, const SHAPE_ARC& aB, int aClearance,
int* aActual, VECTOR2I* aLocation, VECTOR2I* aMTV )
2018-05-16 13:06:44 -07:00
{
wxASSERT_MSG( !aMTV, wxString::Format( "MTV not implemented for %s : %s collisions",
aA.Type(),
aB.Type() ) );
SEG mediatrix( aA.GetCenter(), aB.GetCenter() );
2020-12-12 12:36:09 +00:00
std::vector<VECTOR2I> ips;
// Basic case - arcs intersect
if( aA.Intersect( aB, &ips ) > 0 )
{
if( aActual )
*aActual = 0;
if( aLocation )
*aLocation = ips[0]; // Pick the first intersection point
return true;
}
// Arcs don't intersect, build a list of points to check
std::vector<VECTOR2I> ptsA;
std::vector<VECTOR2I> ptsB;
bool cocentered = ( mediatrix.A == mediatrix.B );
// 1: Interior points of both arcs, which are on the line segment between the two centres
if( !cocentered )
{
aA.IntersectLine( mediatrix, &ptsA );
aB.IntersectLine( mediatrix, &ptsB );
}
// 2: Check arc end points
ptsA.push_back( aA.GetP0() );
ptsA.push_back( aA.GetP1() );
ptsB.push_back( aB.GetP0() );
ptsB.push_back( aB.GetP1() );
// 3: Endpoint of one and "projected" point on the other, which is on the
// line segment through that endpoint and the centre of the other arc
aA.IntersectLine( SEG( aB.GetP0(), aA.GetCenter() ), &ptsA );
aA.IntersectLine( SEG( aB.GetP1(), aA.GetCenter() ), &ptsA );
aB.IntersectLine( SEG( aA.GetP0(), aB.GetCenter() ), &ptsB );
aB.IntersectLine( SEG( aA.GetP1(), aB.GetCenter() ), &ptsB );
double minDist = std::numeric_limits<double>::max();
SEG minDistSeg;
bool rv = false;
int widths = ( aA.GetWidth() / 2 ) + ( aB.GetWidth() / 2 );
// @todo performance could be improved by only checking certain points (e.g only check end
// points against other end points or their corresponding "projected" points)
for( const VECTOR2I& ptA : ptsA )
{
for( const VECTOR2I& ptB : ptsB )
{
SEG candidateMinDist( ptA, ptB );
int dist = candidateMinDist.Length() - widths;
if( dist < aClearance )
{
if( !rv || dist < minDist )
{
minDist = dist;
minDistSeg = candidateMinDist;
}
rv = true;
}
}
}
if( rv && aActual )
*aActual = std::max( 0, minDistSeg.Length() - widths );
if( rv && aLocation )
*aLocation = minDistSeg.Center();
return rv;
2018-05-16 13:06:44 -07:00
}
2020-12-12 12:36:09 +00:00
template<class T_a, class T_b>
inline bool CollCase( const SHAPE* aA, const SHAPE* aB, int aClearance, int* aActual,
VECTOR2I* aLocation, VECTOR2I* aMTV )
{
return Collide( *static_cast<const T_a*>( aA ), *static_cast<const T_b*>( aB ),
aClearance, aActual, aLocation, aMTV);
}
2020-12-12 12:36:09 +00:00
template<class T_a, class T_b>
inline bool CollCaseReversed ( const SHAPE* aA, const SHAPE* aB, int aClearance, int* aActual,
VECTOR2I* aLocation, VECTOR2I* aMTV )
{
bool rv = Collide( *static_cast<const T_b*>( aB ), *static_cast<const T_a*>( aA ),
aClearance, aActual, aLocation, aMTV);
if( rv && aMTV)
*aMTV = - *aMTV;
return rv;
}
static bool collideSingleShapes( const SHAPE* aA, const SHAPE* aB, int aClearance, int* aActual,
VECTOR2I* aLocation, VECTOR2I* aMTV )
2015-01-16 09:10:23 +01:00
{
switch( aA->Type() )
{
2021-02-25 17:18:13 +01:00
case SH_NULL:
return false;
case SH_RECT:
switch( aB->Type() )
{
2015-01-16 09:10:23 +01:00
case SH_RECT:
return CollCase<SHAPE_RECT, SHAPE_RECT>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_CIRCLE:
return CollCase<SHAPE_RECT, SHAPE_CIRCLE>( aA, aB, aClearance, aActual, aLocation, aMTV );
2015-01-16 09:10:23 +01:00
case SH_LINE_CHAIN:
return CollCase<SHAPE_RECT, SHAPE_LINE_CHAIN>( aA, aB, aClearance, aActual, aLocation, aMTV );
2015-01-16 09:10:23 +01:00
case SH_SEGMENT:
return CollCase<SHAPE_RECT, SHAPE_SEGMENT>( aA, aB, aClearance, aActual, aLocation, aMTV );
2015-01-16 09:10:23 +01:00
case SH_SIMPLE:
case SH_POLY_SET_TRIANGLE:
return CollCase<SHAPE_RECT, SHAPE_LINE_CHAIN_BASE>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_ARC:
return CollCaseReversed<SHAPE_RECT, SHAPE_ARC>( aA, aB, aClearance, aActual, aLocation, aMTV );
2018-05-16 13:06:44 -07:00
case SH_NULL:
return false;
default:
2015-07-07 18:37:03 +02:00
break;
}
break;
2015-01-16 09:10:23 +01:00
case SH_CIRCLE:
switch( aB->Type() )
{
case SH_RECT:
return CollCaseReversed<SHAPE_CIRCLE, SHAPE_RECT>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_CIRCLE:
return CollCase<SHAPE_CIRCLE, SHAPE_CIRCLE>( aA, aB, aClearance, aActual, aLocation, aMTV );
2015-01-16 09:10:23 +01:00
case SH_LINE_CHAIN:
return CollCase<SHAPE_CIRCLE, SHAPE_LINE_CHAIN>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_SEGMENT:
return CollCase<SHAPE_CIRCLE, SHAPE_SEGMENT>( aA, aB, aClearance, aActual, aLocation, aMTV );
2015-01-16 09:10:23 +01:00
case SH_SIMPLE:
case SH_POLY_SET_TRIANGLE:
return CollCase<SHAPE_CIRCLE, SHAPE_LINE_CHAIN_BASE>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_ARC:
return CollCaseReversed<SHAPE_CIRCLE, SHAPE_ARC>( aA, aB, aClearance, aActual, aLocation, aMTV );
2021-02-25 17:18:13 +01:00
case SH_NULL:
return false;
2018-05-16 13:06:44 -07:00
default:
2015-07-07 18:37:03 +02:00
break;
}
break;
case SH_LINE_CHAIN:
switch( aB->Type() )
{
case SH_RECT:
return CollCase<SHAPE_RECT, SHAPE_LINE_CHAIN>( aB, aA, aClearance, aActual, aLocation, aMTV );
case SH_CIRCLE:
return CollCase<SHAPE_CIRCLE, SHAPE_LINE_CHAIN>( aB, aA, aClearance, aActual, aLocation, aMTV );
case SH_LINE_CHAIN:
return CollCase<SHAPE_LINE_CHAIN, SHAPE_LINE_CHAIN>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_SEGMENT:
return CollCase<SHAPE_LINE_CHAIN, SHAPE_SEGMENT>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_SIMPLE:
case SH_POLY_SET_TRIANGLE:
return CollCase<SHAPE_LINE_CHAIN, SHAPE_LINE_CHAIN_BASE>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_ARC:
return CollCaseReversed<SHAPE_LINE_CHAIN, SHAPE_ARC>( aA, aB, aClearance, aActual, aLocation, aMTV );
2018-05-16 13:06:44 -07:00
case SH_NULL:
return false;
default:
2015-07-07 18:37:03 +02:00
break;
}
break;
case SH_SEGMENT:
switch( aB->Type() )
{
case SH_RECT:
return CollCase<SHAPE_RECT, SHAPE_SEGMENT>( aB, aA, aClearance, aActual, aLocation, aMTV );
case SH_CIRCLE:
return CollCaseReversed<SHAPE_SEGMENT, SHAPE_CIRCLE>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_LINE_CHAIN:
return CollCase<SHAPE_LINE_CHAIN, SHAPE_SEGMENT>( aB, aA, aClearance, aActual, aLocation, aMTV );
case SH_SEGMENT:
return CollCase<SHAPE_SEGMENT, SHAPE_SEGMENT>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_SIMPLE:
case SH_POLY_SET_TRIANGLE:
return CollCase<SHAPE_LINE_CHAIN_BASE, SHAPE_SEGMENT>( aB, aA, aClearance, aActual, aLocation, aMTV );
case SH_ARC:
return CollCaseReversed<SHAPE_SEGMENT, SHAPE_ARC>( aA, aB, aClearance, aActual, aLocation, aMTV );
2018-05-16 13:06:44 -07:00
case SH_NULL:
return false;
default:
2015-07-07 18:37:03 +02:00
break;
}
break;
case SH_SIMPLE:
case SH_POLY_SET_TRIANGLE:
switch( aB->Type() )
{
case SH_RECT:
return CollCase<SHAPE_RECT, SHAPE_LINE_CHAIN_BASE>( aB, aA, aClearance, aActual, aLocation, aMTV );
case SH_CIRCLE:
return CollCase<SHAPE_CIRCLE, SHAPE_LINE_CHAIN_BASE>( aB, aA, aClearance, aActual, aLocation, aMTV );
case SH_LINE_CHAIN:
return CollCase<SHAPE_LINE_CHAIN, SHAPE_LINE_CHAIN_BASE>( aB, aA, aClearance, aActual, aLocation, aMTV );
case SH_SEGMENT:
return CollCase<SHAPE_LINE_CHAIN_BASE, SHAPE_SEGMENT>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_SIMPLE:
case SH_POLY_SET_TRIANGLE:
return CollCase<SHAPE_LINE_CHAIN_BASE, SHAPE_LINE_CHAIN_BASE>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_ARC:
return CollCaseReversed<SHAPE_LINE_CHAIN_BASE, SHAPE_ARC>( aA, aB, aClearance, aActual, aLocation, aMTV );
2018-05-16 13:06:44 -07:00
case SH_NULL:
return false;
default:
2018-05-16 13:06:44 -07:00
break;
}
break;
2018-05-16 13:06:44 -07:00
case SH_ARC:
switch( aB->Type() )
{
case SH_RECT:
return CollCase<SHAPE_ARC, SHAPE_RECT>( aA, aB, aClearance, aActual, aLocation, aMTV );
2018-05-16 13:06:44 -07:00
case SH_CIRCLE:
return CollCase<SHAPE_ARC, SHAPE_CIRCLE>( aA, aB, aClearance, aActual, aLocation, aMTV );
2018-05-16 13:06:44 -07:00
case SH_LINE_CHAIN:
return CollCase<SHAPE_ARC, SHAPE_LINE_CHAIN>( aA, aB, aClearance, aActual, aLocation, aMTV );
2018-05-16 13:06:44 -07:00
case SH_SEGMENT:
return CollCase<SHAPE_ARC, SHAPE_SEGMENT>( aA, aB, aClearance, aActual, aLocation, aMTV );
2018-05-16 13:06:44 -07:00
case SH_SIMPLE:
case SH_POLY_SET_TRIANGLE:
return CollCase<SHAPE_ARC, SHAPE_LINE_CHAIN_BASE>( aA, aB, aClearance, aActual, aLocation, aMTV );
2018-05-16 13:06:44 -07:00
case SH_ARC:
return CollCase<SHAPE_ARC, SHAPE_ARC>( aA, aB, aClearance, aActual, aLocation, aMTV );
case SH_NULL:
return false;
2015-01-16 09:10:23 +01:00
default:
break;
}
break;
default:
break;
2015-01-16 09:10:23 +01:00
}
wxFAIL_MSG( wxString::Format( "Unsupported collision: %s with %s",
SHAPE_TYPE_asString( aA->Type() ),
SHAPE_TYPE_asString( aB->Type() ) ) );
2015-01-16 09:10:23 +01:00
return false;
}
static bool collideShapes( const SHAPE* aA, const SHAPE* aB, int aClearance, int* aActual,
VECTOR2I* aLocation, VECTOR2I* aMTV )
{
int currentActual = std::numeric_limits<int>::max();
VECTOR2I currentLocation;
VECTOR2I currentMTV(0, 0);
bool colliding = false;
auto canExit =
[&]()
{
if( !colliding )
return false;
if( aActual && currentActual > 0 )
return false;
if( aMTV )
return false;
return true;
};
auto collideCompoundSubshapes =
[&]( const SHAPE* elemA, const SHAPE* elemB, int clearance ) -> bool
{
int actual = 0;
VECTOR2I location;
VECTOR2I mtv;
if( collideSingleShapes( elemA, elemB, clearance,
aActual || aLocation ? &actual : nullptr,
aLocation ? &location : nullptr,
aMTV ? &mtv : nullptr ) )
{
if( actual < currentActual )
{
currentActual = actual;
currentLocation = location;
}
if( aMTV && mtv.SquaredEuclideanNorm() > currentMTV.SquaredEuclideanNorm() )
{
currentMTV = mtv;
}
return true;
}
return false;
};
if( aA->Type() == SH_COMPOUND && aB->Type() == SH_COMPOUND )
{
const SHAPE_COMPOUND* cmpA = static_cast<const SHAPE_COMPOUND*>( aA );
const SHAPE_COMPOUND* cmpB = static_cast<const SHAPE_COMPOUND*>( aB );
for( const SHAPE* elemA : cmpA->Shapes() )
{
for( const SHAPE* elemB : cmpB->Shapes() )
{
if( collideCompoundSubshapes( elemA, elemB, aClearance ) )
{
colliding = true;
if( canExit() )
break;
}
}
if( canExit() )
break;
}
}
else if( aA->Type() == SH_COMPOUND )
{
const SHAPE_COMPOUND* cmpA = static_cast<const SHAPE_COMPOUND*>( aA );
for( const SHAPE* elemA : cmpA->Shapes() )
{
if( collideCompoundSubshapes( elemA, aB, aClearance ) )
{
colliding = true;
if( canExit() )
break;
}
}
}
else if( aB->Type() == SH_COMPOUND )
{
const SHAPE_COMPOUND* cmpB = static_cast<const SHAPE_COMPOUND*>( aB );
for( const SHAPE* elemB : cmpB->Shapes() )
{
if( collideCompoundSubshapes( aA, elemB, aClearance ) )
{
colliding = true;
if( canExit() )
break;
}
}
}
else
{
return collideSingleShapes( aA, aB, aClearance, aActual, aLocation, aMTV );
}
2021-02-25 17:18:13 +01:00
if( colliding )
{
if( aLocation )
*aLocation = currentLocation;
if( aActual )
*aActual = currentActual;
if( aMTV )
*aMTV = currentMTV;
}
return colliding;
}
2020-12-12 12:36:09 +00:00
bool SHAPE::Collide( const SHAPE* aShape, int aClearance, VECTOR2I* aMTV ) const
{
return collideShapes( this, aShape, aClearance, nullptr, nullptr, aMTV );
}
bool SHAPE::Collide( const SHAPE* aShape, int aClearance, int* aActual, VECTOR2I* aLocation ) const
{
return collideShapes( this, aShape, aClearance, aActual, aLocation, nullptr );
}
2015-06-12 17:11:50 +02:00