311 lines
7.7 KiB
C++
Raw Normal View History

2018-02-04 13:09:30 +01:00
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 CERN
* Copyright (C) 2019-2020 KiCad Developers, see AUTHORS.txt for contributors.
2018-02-04 13:09:30 +01:00
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <geometry/geometry_utils.h>
#include <geometry/seg.h> // for SEG
2018-02-04 13:09:30 +01:00
#include <geometry/shape_arc.h>
#include <geometry/shape_line_chain.h>
2020-07-03 16:12:28 +01:00
#include <trigo.h>
2018-02-04 13:09:30 +01:00
SHAPE_ARC::SHAPE_ARC( const VECTOR2I& aArcCenter, const VECTOR2I& aArcStartPoint,
2020-07-03 16:12:28 +01:00
double aCenterAngle, int aWidth ) :
SHAPE( SH_ARC ), m_width( aWidth )
{
m_start = aArcStartPoint;
m_mid = aArcStartPoint;
m_end = aArcStartPoint;
RotatePoint( m_mid, aArcCenter, -aCenterAngle * 10.0 / 2.0 );
RotatePoint( m_end, aArcCenter, -aCenterAngle * 10.0 );
update_bbox();
}
SHAPE_ARC::SHAPE_ARC( const VECTOR2I& aArcStart, const VECTOR2I& aArcMid,
2020-07-03 16:12:28 +01:00
const VECTOR2I& aArcEnd, int aWidth ) :
SHAPE( SH_ARC ), m_start( aArcStart ), m_mid( aArcMid ), m_end( aArcEnd ),
m_width( aWidth )
{
update_bbox();
}
SHAPE_ARC::SHAPE_ARC( const SHAPE_ARC& aOther )
: SHAPE( SH_ARC )
{
m_start = aOther.m_start;
m_end = aOther.m_end;
m_mid = aOther.m_mid;
m_width = aOther.m_width;
m_bbox = aOther.m_bbox;
}
bool SHAPE_ARC::Collide( const SEG& aSeg, int aClearance, int* aActual ) const
2018-02-04 13:09:30 +01:00
{
int minDist = aClearance + m_width / 2;
VECTOR2I center = GetCenter();
ecoord dist_sq = VECTOR2I::ECOORD_MAX;
2018-02-04 13:09:30 +01:00
VECTOR2I ab = ( aSeg.B - aSeg.A );
VECTOR2I ac = ( center - aSeg.A );
2018-02-04 13:09:30 +01:00
ecoord lenAbSq = ab.SquaredEuclideanNorm();
double lambda = (double) ac.Dot( ab ) / (double) lenAbSq;
2018-02-04 13:09:30 +01:00
if( lambda >= 0.0 && lambda <= 1.0 )
{
VECTOR2I p;
p.x = (double) aSeg.A.x * lambda + (double) aSeg.B.x * (1.0 - lambda);
p.y = (double) aSeg.A.y * lambda + (double) aSeg.B.y * (1.0 - lambda);
dist_sq = std::min( dist_sq, ( m_start - p ).SquaredEuclideanNorm() );
dist_sq = std::min( dist_sq, ( m_end - p ).SquaredEuclideanNorm() );
2018-02-04 13:09:30 +01:00
}
dist_sq = std::min( dist_sq, aSeg.SquaredDistance( m_start ) );
dist_sq = std::min( dist_sq, aSeg.SquaredDistance( m_end ) );
2018-02-04 13:09:30 +01:00
if( dist_sq == 0 || dist_sq < (ecoord) minDist * minDist )
{
if( aActual )
*aActual = std::max( 0, (int) sqrt( dist_sq ) - m_width / 2 );
2018-02-04 13:09:30 +01:00
return true;
}
2018-02-04 13:09:30 +01:00
return false;
2018-02-04 13:09:30 +01:00
}
void SHAPE_ARC::update_bbox()
2018-04-19 13:20:25 -07:00
{
std::vector<VECTOR2I> points;
// Put start and end points in the point list
points.push_back( m_start );
points.push_back( m_end );
2018-04-19 13:20:25 -07:00
double start_angle = GetStartAngle();
double end_angle = start_angle + GetCentralAngle();
// we always count quadrants clockwise (increasing angle)
if( start_angle > end_angle )
std::swap( start_angle, end_angle );
int quad_angle_start = std::ceil( start_angle / 90.0 );
int quad_angle_end = std::floor( end_angle / 90.0 );
// count through quadrants included in arc
for( int quad_angle = quad_angle_start; quad_angle <= quad_angle_end; ++quad_angle )
{
const int radius = KiROUND( GetRadius() );
VECTOR2I quad_pt = GetCenter();
switch( quad_angle % 4 )
{
case 0: quad_pt += { radius, 0 }; break;
case 1:
case -3: quad_pt += { 0, radius }; break;
case 2:
case -2: quad_pt += { -radius, 0 }; break;
case 3:
case -1: quad_pt += { 0, -radius }; break;
default: assert( false );
}
points.push_back( quad_pt );
}
m_bbox.Compute( points );
}
const BOX2I SHAPE_ARC::BBox( int aClearance ) const
{
BOX2I bbox( m_bbox );
2018-04-19 13:20:25 -07:00
if( aClearance != 0 )
bbox.Inflate( aClearance );
return bbox;
}
bool SHAPE_ARC::Collide( const VECTOR2I& aP, int aClearance, int* aActual ) const
2018-02-04 13:09:30 +01:00
{
int minDist = aClearance + m_width / 2;
auto bbox = BBox( minDist );
if( !bbox.Contains( aP ) )
return false;
ecoord min_dist_sq = (ecoord) minDist * minDist;
ecoord r = GetRadius();
ecoord r_sq = r * r;
ecoord dist_sq = ( aP - GetCenter() ).SquaredEuclideanNorm();
ecoord dist_to_edge_sq = abs( dist_sq - r_sq );
if( dist_to_edge_sq < min_dist_sq )
{
if( aActual )
*aActual = std::max( 0, (int) sqrt( dist_to_edge_sq ) - m_width / 2 );
return true;
}
return false;
2018-02-04 13:09:30 +01:00
}
double SHAPE_ARC::GetStartAngle() const
{
VECTOR2D d( m_start - GetCenter() );
2018-02-04 13:09:30 +01:00
auto ang = 180.0 / M_PI * atan2( d.y, d.x );
2018-02-04 13:09:30 +01:00
return NormalizeAngleDegrees( ang, 0.0, 360.0 );
}
2018-02-04 13:09:30 +01:00
2018-02-04 13:09:30 +01:00
double SHAPE_ARC::GetEndAngle() const
{
VECTOR2D d( m_end - GetCenter() );
auto ang = 180.0 / M_PI * atan2( d.y, d.x );
return NormalizeAngleDegrees( ang, 0.0, 360.0 );
}
2018-02-04 13:09:30 +01:00
VECTOR2I SHAPE_ARC::GetCenter() const
{
return GetArcCenter( m_start, m_mid, m_end );
}
2018-02-04 13:09:30 +01:00
2018-02-04 13:09:30 +01:00
double SHAPE_ARC::GetCentralAngle() const
{
VECTOR2I center = GetCenter();
VECTOR2I p0 = m_start - center;
VECTOR2I p1 = m_mid - center;
VECTOR2I p2 = m_end - center;
double angle1 = ArcTangente( p1.y, p1.x ) - ArcTangente( p0.y, p0.x );
double angle2 = ArcTangente( p2.y, p2.x ) - ArcTangente( p1.y, p1.x );
return ( NormalizeAngle180( angle1 ) + NormalizeAngle180( angle2 ) ) / 10.0;
2018-02-04 13:09:30 +01:00
}
double SHAPE_ARC::GetRadius() const
{
return ( m_start - GetCenter() ).EuclideanNorm();
}
const SHAPE_LINE_CHAIN SHAPE_ARC::ConvertToPolyline( double aAccuracy ) const
2018-02-04 13:09:30 +01:00
{
SHAPE_LINE_CHAIN rv;
double r = GetRadius();
double sa = GetStartAngle();
auto c = GetCenter();
double ca = GetCentralAngle();
2018-02-04 13:09:30 +01:00
int n;
if( r == 0.0 )
{
n = 0;
}
else
{
n = GetArcToSegmentCount( r, aAccuracy, ca );
}
2018-02-04 13:09:30 +01:00
for( int i = 0; i <= n ; i++ )
{
double a = sa;
if( n != 0 )
a += ( ca * i ) / n;
2018-02-04 13:09:30 +01:00
double x = c.x + r * cos( a * M_PI / 180.0 );
double y = c.y + r * sin( a * M_PI / 180.0 );
rv.Append( KiROUND( x ), KiROUND( y ) );
2018-02-04 13:09:30 +01:00
}
return rv;
}
void SHAPE_ARC::Move( const VECTOR2I& aVector )
{
m_start += aVector;
m_end += aVector;
m_mid += aVector;
update_bbox();
}
void SHAPE_ARC::Rotate( double aAngle, const VECTOR2I& aCenter )
{
m_start -= aCenter;
m_end -= aCenter;
m_mid -= aCenter;
m_start.Rotate( aAngle );
m_end.Rotate( aAngle );
m_mid.Rotate( aAngle );
m_start += aCenter;
m_end += aCenter;
m_mid += aCenter;
update_bbox();
}
void SHAPE_ARC::Mirror( bool aX, bool aY, const VECTOR2I& aVector )
{
if( aX )
{
m_start.x = -m_start.x + 2 * aVector.x;
m_end.x = -m_end.x + 2 * aVector.x;
m_mid.x = -m_mid.x + 2 * aVector.x;
}
if( aY )
{
m_start.y = -m_start.y + 2 * aVector.y;
m_end.y = -m_end.y + 2 * aVector.y;
m_mid.y = -m_mid.y + 2 * aVector.y;
}
update_bbox();
}